Nitrate as a parameter for differentiating groundwater flow systems in urban and agricultural areas: the case of Morelia-Capula area, Mexico | Les nitrates comme paramètre permettant de différencier les systèmes d’écoulement des eaux souterraines dans les zones urbaines et agricoles: le cas de la région de Morelia-Capula au Mexique El nitrato Como un parámetro para diferenciar los sistemas de flujo de agua subterránea en áreas urbanas y rurales: el caso del área de Morelia-Capula, México 硝酸盐作为区分城市区和农业区的地下水流系统的参数:墨西哥莫雷利亚-卡普拉地区的研究案例 Nitrato come parametro per differenziare i sistemi di flusso delle acque sotterranee nelle aree urbane e rurali: il caso dell’area di Morelia-Capula, Messico Nitrato Como um parâmetro para diferenciar sistemas de fluxo de águas subterrâneas em áreas urbanas e agrícolas: o caso da área de Morelia-Capula, México
2019
Pérez Villarreal, José | Ávila Olivera, Jorge Alejandro | Israde Alcántara, Isabel | Buenrostro Delgado, Otoniel
Nitrate is found in groundwater due to natural and anthropic processes. Nitrate content in groundwater is associated with factors such as human activities, soil type, climate, geology and chemistry of groundwater. Some of these factors (climate and geology) coincide with those that determine the type of groundwater flow system (local, intermediate or regional) present in an area which, in turn, is influenced by climate, stratigraphy, and type of subsoil and surface rocks; therefore, it is expected that the concentration of nitrate is related to the type of groundwater flow. The relationship between the concentration of nitrate in groundwater samples and the type of flow was analyzed in an aquifer system located in the Trans-Mexican Volcanic Arc, within the Michoacán-Guanajuato volcanic complex. The system is composed of two hydrogeological units, one volcanic and the other sedimentary, with the presence of geological faults, in a context where there is agricultural activity and deficient domestic wastewater management. To improve understanding of the overall aquifer system, 34 groundwater samples (28 wells, 6 springs) were analyzed. The results indicate that each flow system presents characteristic patterns of nitrate concentration and groundwater chemical composition. A high nitrate concentration was found in local and local-intermediate flow systems. Nitrate concentration decreased from local to intermediate and regional flows. The nitrate concentration decreased depending on groundwater flow direction, so it is possible to use nitrate as a parameter to differentiate groundwater flow systems.
Afficher plus [+] Moins [-]Mots clés AGROVOC
Informations bibliographiques
Cette notice bibliographique a été fournie par National Agricultural Library
Découvrez la collection de ce fournisseur de données dans AGRIS