Soil Respiration and N₂O Flux Response to UV-B Radiation and Straw Incorporation in a Soybean–Winter Wheat Rotation System
2013
Hu, Zhenghua | Cui, Hailing | Chen, Shutao | Shen, Shuanghe | Li, Hanmao | Yang, Yanping | Li, Cenzi
Field experiments were conducted in the 2008–2009 soybean and winter wheat-growing seasons to assess soil respiration (SR) and nitrous oxide (N₂O) emission as affected by enhanced UV-B radiation and straw incorporation. The SR rate was measured using a soil CO₂ flux system; the N₂O flux was measured using a static chamber–gas chromatograph technique. The results showed that in the soybean and winter wheat-growing seasons, enhanced UV-B radiation significantly decreased the SR rates and that straw incorporation increased the SR rates compared to the control treatment. The combined treatment of UV-B and straw incorporation had no obvious influence on the SR rates. Enhanced UV-B radiation, straw incorporation, and the combination treatment increased the temperature sensitivity of SR in the soybean-growing season. The study also showed that N₂O emissions were reduced by enhanced UV-B radiation and that straw incorporation had no significant effects on the mean N₂O emission fluxes in the soybean and winter wheat-growing seasons. Our findings suggest that enhanced UV-B radiation may lead to a decrease in SR and in N₂O emissions, straw incorporation may increase SR, and the combined treatment may have no significant influence on SR and N₂O emissions from soybean–winter wheat rotation systems.
Afficher plus [+] Moins [-]Mots clés AGROVOC
Informations bibliographiques
Cette notice bibliographique a été fournie par National Agricultural Library
Découvrez la collection de ce fournisseur de données dans AGRIS