Deep learning driven QSAR model for environmental toxicology: Effects of endocrine disrupting chemicals on human health
2019
Heo, SungKu | Safder, Usman | Yoo, ChangKyoo
Over 80,000 endocrine-disrupting chemicals (EDCs) are considered emerging contaminants (ECs), which are of great concern due to their effects on human health. Quantitative structure-activity relationship (QSAR) models are a promising alternative to in vitro methods to predict the toxicological effects of chemicals on human health. In this study, we assessed a deep-learning based QSAR (DL-QSAR) model to predict the qualitative and the quantitative effects of EDCs on the human endocrine system, and especially sex-hormone binding globulin (SHBG) and estrogen receptor (ER). Statistical analyses of the qualitative responses indicated that the accuracies of all three DL-QSAR methods were above 90%, and greater than the other statistical and machine learning models, indicating excellent classification performance. The quantitative analyses, as assessed using deep-neural-network-based QSAR (DNN-QSAR), resulted in a coefficient of determination (R²) of 0.80 and predictive square correlation coefficient (Q²) of 0.86, which implied satisfactory goodness of fit and predictive ability. Thus, DNN was able to transform sparse molecular descriptors into higher dimensional spaces, and was superior for assessment qualitative responses. Moreover, DNN-QSAR demonstrated excellent performance in the discipline of computational chemistry by handling multicollinearity and overfitting problems.
Afficher plus [+] Moins [-]Mots clés AGROVOC
Informations bibliographiques
Cette notice bibliographique a été fournie par National Agricultural Library
Découvrez la collection de ce fournisseur de données dans AGRIS