Enhanced Immobilization and Phytoremediation of Heavy Metals in Landfill Contaminated Soils
2020
Elbehiry, Fathy | Elbasiouny, Heba | Ali, Rafaat | Brevik, Eric C.
Heavy metal contamination from landfills has become a worldwide problem. Concerns have been raised over their impacts on human health and the environment. Soil amendment-assisted phytoremediation is rapidly gaining attention as a biotechnology to accelerate heavy metal (HM) removal from contaminated soils or immobilize the HMs. How different amendments influence this process is still an important research question. This study quantified the bioaccumulation factor (BAF) and removal efficiency (RE) of HMs by wheat (Triticum aestivum), bean (Vicia faba), and rocca (Eruca sativa) in a pot experiment with biochar (BC), humic substances (HS) (in the form of potassium humate), and iron oxide (FO) amendments to clarify the effect of these treatments on phytoremediation. Each amendment was applied to the soil at a rate of 20 g kg⁻¹ soil, with unamended soil as a control. The results indicated that the available HMs were significantly decreased in the amended soils (p < 0.05) as compared with untreated soil. Plant concentrations of all the studied metals decreased with the soil amendments as compared to untreated soils. BAF was higher than 1 in all plants, and RE indicated the plants were most efficient in removing Pb from the studied soils. In general, soil amendments aided soil HM immobilization and reduced the accumulation of HMs in the cultivated plants. The studied amendments could be further explored as tools to remediate contaminated sites.
Afficher plus [+] Moins [-]Mots clés AGROVOC
Informations bibliographiques
Cette notice bibliographique a été fournie par National Agricultural Library
Découvrez la collection de ce fournisseur de données dans AGRIS