Quantity and fate of synthetic microfiber emissions from apparel washing in California and strategies for their reduction
2022
Geyer, Roland | Gavigan, Jenna | Jackson, Alexis M. | Saccomanno, Vienna R. | Suh, Sangwon | Gleason, Mary G.
Synthetic microfibers have been identified as the most prevalent type of microplastic in samples from aquatic, atmospheric, and terrestrial environments across the globe. Apparel washing has shown to be a major source of microfiber pollution. We used California as a case study to estimate the magnitude and fate of microfiber emissions, and to evaluate potential mitigation approaches. First, we quantified synthetic microfiber emissions and fate from apparel washing in California by developing a material flow model which connects California-specific data on synthetic fiber consumption, apparel washing, microfiber generation, and wastewater and biosolid management practices. Next, we used the model to assess the effectiveness of different interventions to reduce microfiber emissions to natural environments. We estimate that in 2019 as much as 2.2 kilotons (kt) of synthetic microfibers were generated by apparel washing in California, a 26% increase since 2008. The majority entered terrestrial environments (1.6 kt), followed by landfills (0.4 kt), waterbodies (0.1 kt), and incineration (0.1 kt). California's wastewater treatment network was estimated to divert 95% of microfibers from waterbodies, mainly to terrestrial environments and primarily via land application of biosolids. Our analysis also reveals that application of biosolids on agricultural lands facilitates a directional flow of microfibers from higher-income urban counties to lower-income rural communities. Without interventions, annual synthetic microfiber emissions to California's natural environments are expected to increase by 17% to 2.1 kt by 2026. Further increasing the microfiber retention efficiency at the wastewater treatment plant would increase emissions to terrestrial environments, which suggests that microfibers should be removed before entering the wastewater system. In our model, full adoption of in-line filters in washing machines decreased annual synthetic microfiber emissions to natural environments by 79% to 0.5 kt and offered the largest reduction of all modeled scenarios.
Afficher plus [+] Moins [-]Mots clés AGROVOC
Informations bibliographiques
Cette notice bibliographique a été fournie par National Agricultural Library
Découvrez la collection de ce fournisseur de données dans AGRIS