Microarray analysis reveals selenium down-regulates Glucosinolate biosynthesis in Arabidopsis shoots
2014
Sams, C. E. | Panthee, D. R. | Charron, C. S. | Kopsell, D. A. | Barickman, T. C. | Yuan, J. S.
Glucosinolates (GS) are important plant secondary metabolites present in several plant species, including Arabidopsis thaliana. While genotypic and environmental regulations of GS have been reported, few studies present data on their regulation at the molecular level. Therefore, the objective of this study was to explore differential expression of genes associated with GS in Arabidopsis in response to selenium (Se), shown previously to impact GS accumulations in Brassica species. Arabidopsis was grown under 0.0 or 10.0 µmol Na2SeO4 in solution culture media. Shoot tissue samples were collected before anthesis for analytical assessment of GSs and genetic expression analysis of biosynthesis. Microarray analysis was performed using Arabidopsis oligo nucleotide chips containing more than 31,000 genes. Biosynthesis pathway analysis using AraCyc revealed that GS biosynthesis was invoked by the differentially expressed genes in this study. Involvement of the same gene in more than one biosynthesis pathway indicated that the same enzyme may be involved in multiple biosynthesis pathways of GS. These findings in Arabidopsis may be useful for modifying GS levels in agriculturally important plant species.
Afficher plus [+] Moins [-]Mots clés AGROVOC
Informations bibliographiques
Cette notice bibliographique a été fournie par National Agricultural Library
Découvrez la collection de ce fournisseur de données dans AGRIS