Copper/Zinc Bioaccumulation and the Effect of Phytotoxicity on the Growth of Lettuce (Lactuca sativa L.) in Non-contaminated, Metal-Contaminated and Swine Manure-Enriched Soils
2017
Wolf, Mariane | Baretta, Dilmar | Becegato, Valter A. | Almeida, Vitor de C. | Paulino, Alexandre T.
Copper/zinc bioaccumulation and the effect of phytotoxicity on the growth of lettuce (Lactuca sativa L.) were studied in plastic vessels containing (i) non-contaminated soil, (ii) copper-contaminated soils at concentrations of 75.0 and 125.0 mg kg⁻¹, (iii) zinc-contaminated soils at concentrations of 1200 and 2400 mg kg⁻¹, and (iv) soil enriched with swine manure. Copper and zinc concentrations in lettuce leaves were determined by flame atomic absorption spectrometry during 42 days of growth. Copper concentrations from 0.92 to 13.06 mg kg⁻¹ were found in lettuce leaves grown in copper-contaminated soils and zinc concentrations from 58.13 to 177.85 mg kg⁻¹ were found in lettuce leaves grown in zinc-contaminated soils. Copper and zinc concentrations in lettuce leaves grown in swine manure-enriched soils ranged from 0.82 to 8.33 and 0.68 to 13.27 mg kg⁻¹, respectively. Copper and zinc bioaccumulation caused a decrease in lettuce growth in metal-contaminated soils and an increase in phytotoxicity effects when compared to growth in non-contaminated and manure-enriched soils. These findings were confirmed by measuring leaf areas and biomasses. Copper was less toxic to lettuce than zinc due to the different concentrations in the soil. Lettuce growth and development was better in the swine manure-enriched soil than non-contaminated soil, which indicates that swine manure is a safe agricultural biofertilizer when used in appropriate amounts to avoid metal bioaccumulation in soil and plants.
Afficher plus [+] Moins [-]Mots clés AGROVOC
Informations bibliographiques
Cette notice bibliographique a été fournie par National Agricultural Library
Découvrez la collection de ce fournisseur de données dans AGRIS