Synergistic effects of key parameters on the fate of antibiotic resistance genes during swine manure composting
2019
Lu, Xiao-Ming | Lu, Peng-Zhen
Livestock manure is a reservoir of antibiotic resistance genes (ARGs), posing a potential risk to environment and human health. However, there has been no optimization study about the comprehensive composting treatment for livestock manure ARGs based on multiple operation factors. In this study, anaerobic composting of swine manure in light was conducted under different combined conditions of composting time, temperature, water content, pH, heavy metal passivators and wheat straw. The diversity and relative abundance of ARGs in the compost were detected using high throughput quantitative real-time PCR, and the concentrations of antibiotics and heavy metals were determined. The results showed that under the optimized conditions (composting time, 30 d; temperature, 50 °C; water content, 50%; pH 9.0; heavy metal passivators and wheat straw), compared with the control, the detected number of ARGs and mobile genetic elements in the compost was reduced by 45% and 27.3%, and their relative abundance decreased by 33.9% and 36.9%, respectively. Moreover, the exchangeable heavy metal content of the compost declined by 34.7–57.1%, and the antibiotic level decreased by 28.8–77.8%. This study proposes that synergistic effects of key parameters can effectively mitigate the combined contamination of ARGs, antibiotics, and heavy metals in swine manure.Optimized parameters (anaerobic composting time 30 d, temperature 50 °C, water content 50%, pH 9.0) effectively mitigated the combined pollution of ARGs, antibiotics, and heavy metals in swine manure.
Afficher plus [+] Moins [-]Mots clés AGROVOC
Informations bibliographiques
Cette notice bibliographique a été fournie par National Agricultural Library
Découvrez la collection de ce fournisseur de données dans AGRIS