The next generation of soil and water bodies heavy metals prediction and detection: New expert system based Edge Cloud Server and Federated Learning technology
2022
Yaseen, Zaher Mundher
Heavy metals (HMs) in soil and water bodies greatly threaten human health. The wide separation of HMs urges the necessity to develop an expert system for HMs prediction and detection. In the current perspective, several propositions are discussed to design an innovative intelligence system for HMs prediction and detection in soil and water bodies. The intelligence system incorporates the Edge Cloud Server (ECS) data center, an innovative deep learning predictive model and the Federated Learning (FL) technology. The ECS data center is based on satellite sensing sources under human expertise ruling and HMs in-situ measurement. The FL system comprises a machine learning (ML) technique that trains an algorithm across multiple decentralized edge servers holding local data samples without exchanging them or breaching data privacy. The expected outcomes of the intelligence system are to quantify the soil and water bodies' HMs, develop new modified HMs pollution contamination indices and provide decision-makers and environmental experts with an appropriate vision of soil, surface water, and crop health.
Afficher plus [+] Moins [-]Mots clés AGROVOC
Informations bibliographiques
Cette notice bibliographique a été fournie par National Agricultural Library
Découvrez la collection de ce fournisseur de données dans AGRIS