Nuclear DNA content variation and evolution in liverworts
2013
Bainard, Jillian D. | Forrest, Laura L. | Goffinet, Bernard | Newmaster, Steven G.
Across embryophytes there is a significant range in DNA content, both in regards to genome size (total DNA in an unreduced chromosome complement) and degree of endoreduplication (when DNA replication not followed by division resulting in various ploidy levels within the same individual). However, there is little information available on DNA content evolution in liverworts, the likely sister group to all other living plants. This study seeks to detect a phylogenetic structure in the variation in genome size and degree of endopolyploidy within liverworts. Furthermore, we test the hypothesis that shifts in breeding systems and genome size are correlated, as polyploidy is suggested to be a possible mechanism for the evolution of monoecy in liverworts and could therefore be associated with larger genome sizes. Genome size was determined for 67 liverwort species from 33 families using flow cytometry. Estimates for 48 species and 16 families are new to science. A phylogeny was reconstructed using the plastid gene rbcL. Over all taxa analyzed, there was a considerable range in genome size estimates with 1C-values from 0.27pg (Jungermannia rubra) to 20.46pg (Phyllothallia fuegiana). Large genome sizes were also found in the Haplomitriopsida. None of the liverwort species showed evidence of endopolyploidy. Although some taxa may be polyploids, a correlation between shifts in genome size and breeding system is lacking. Importantly, genome size variation in liverworts exhibits strong phylogenetic signal (Pagel’s λ=0.99955).
Afficher plus [+] Moins [-]Mots clés AGROVOC
Informations bibliographiques
Cette notice bibliographique a été fournie par National Agricultural Library
Découvrez la collection de ce fournisseur de données dans AGRIS