The influence of liquid plant additives on the anthropogenic gas emissions from the combustion of coal-water slurries
2018
Nyashina, G.S. | Strizhak, P.A.
At present, coal is considered one of the main components for the production of cheap, high-energy and environmentally attractive slurry fuels. The latter can be produced on the basis of low-grade coal dust or coal processing wastes. Thus, coal-water slurries and coal-water slurries containing petrochemicals are produced. The involvement of coal and oil processing wastes expands the scope of raw materials, reduces the fuel costs from traditional energy sources and modifies the main economic characteristics of power plant performance. However, it also increases the impact of coal-fired thermal power stations on the environment. In the last 30–50 years, many efforts have been made to decrease the negative impact of human industrial activity on climate. Involving plant-based components in the process of energy generation to save energy and material resources looks very promising nowadays. This research studies the influence of adding typical bioliquids (bioethanol, turpentine, glycerol) on the concentration of anthropogenic emissions from coal-water slurry combustion. Relative mass concentrations of bioliquids varied in a small range below 20%. We focused on the concentration of the most hazardous sulfur and nitrogen oxides from the combustion of typical filter cakes, as well as plant-containing slurries. It was established that the concentration of sulfur oxides can be decreased (as compared to coal) by 75%, whereas that of nitrogen oxides by almost 30%. Using a generalizing criteria expression, we illustrated the main benefits of adding bioliquids to slurry fuels in comparison with coal. Adding 20% of glycerol was found to provide maximum advantages.
Afficher plus [+] Moins [-]Mots clés AGROVOC
Informations bibliographiques
Cette notice bibliographique a été fournie par National Agricultural Library
Découvrez la collection de ce fournisseur de données dans AGRIS