Modeling of complex multi-aquifer systems for groundwater resources evaluation—Swidnica study case (Poland)
2005
Gurwin, Jacek | Lubczynski, Maciek
An example of groundwater resources evaluation methodology by numerical modeling in the complex, unconsolidated, multi-aquifer system of the Swidnica area (~627 km²) is presented. In this study Groundwater Modeling System (GMS) was used to develop a conceptual model on the basis of data from several hundred boreholes and to calibrate a numerical, multi-aquifer model. A steady state calibration was performed using historical natural groundwater table (quasi-natural simulation) data and abundant pumping test transmissivity data. The calibrated recharge was first spatially distributed based on surface lithology and then adjusted until a good match between calculated and measured heads was obtained. The quasi-natural simulation budget input of ~165,000 m³/day consisted of 40.5% of lateral inflow from the SW fault model boundary, 34.5% of average net recharge from precipitation, 13% of infiltration from the Mietkowskie Lake and 12% of river infiltration. The budget output (the same as input) consisted of ~ 88% of river drainage and ~ 12% of lateral outflow. The final, abstraction-influenced simulation representing the current stationary condition was used to verify the model by cross referencing present well drawdowns with well abstractions and by comparison of the groundwater discharge to the rivers with the field baseflow measurements. In this simulation, the total well abstraction of ~53,000 m³/d resulted in 9% increase in overall water balance up to ~180,000 m³/day, 38% increased river infiltration, 24% reduced river drainage, 17% reduced lateral outflow and ~3 times increased downward leakage to the deepest, productive aquifer. The Swidnica study case shows an example, which analyzes an impact of well abstractions on the decline of groundwater table and river discharges, concluding that reserves of renewable water resources are still available. It shows also, that by setting up a conceptual model within the numerical model environment and by applying a quasi-3D solution, complex multi-aquifer systems can be well and efficiently modeled.
Afficher plus [+] Moins [-]Mots clés AGROVOC
Informations bibliographiques
Cette notice bibliographique a été fournie par National Agricultural Library
Découvrez la collection de ce fournisseur de données dans AGRIS