Forecasting and Seasonal Investigation of PM10 Concentration Trend: a Time Series and Trend Analysis Study in Tehran
2023
Pardakhti, Alireza | Baheeraei, Hosein | Dehhaghi, Sam
In this study, a multitude of statistical tools were used to examine PM10 concentration trends and their seasonal behavior from 2015 to 2021 in Tehran. The results of the integrated analysis have led to a better understanding of current PM10 trends which may be useful for future management policies. The Kruskal – Wallis test indicated the significant impact of atmospheric phenomena on the seasonal fluctuations of PM10. The seasonal decomposition of PM10 time series was conducted for better analysis of trends and seasonal oscillations. The seasonal Mann-Kendall test illustrated the significant possibility of a monotonic seasonal trend of PM10 (p = 0.026) while showing its negative slope simultaneously (Sen = -1.496). The forecasting procedure of PM10 until 2024 comprised 15 time series models which were validated by means of 8 statistical criteria. The model validation results indicated that ARIMA (0,1,2) was the most satisfactory case for predicting the future trend of PM10. This model estimated the concentration of PM10 to reach approximately 79.04 (µg/m3) by the end of 2023 with a 95% confidence interval of 51.38 – 107.42 (µg/m3). Overall, it was concluded that the use of the aforementioned analytical tools may help decision-makers gain a better insight into future forecasts of ambient airborne particulate matter.
Afficher plus [+] Moins [-]Mots clés AGROVOC
Informations bibliographiques
Cette notice bibliographique a été fournie par University of Tehran
Découvrez la collection de ce fournisseur de données dans AGRIS