Comparative analysis of the detoxification gene inventory of four major Spodoptera pest species in response to xenobiotics
2021
Amezian, Dries | Nauen, Ralf | Le Goff, Gaëlle | Institut Sophia Agrobiotech (ISA) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Côte d'Azur (UniCA) | Bayer Pharma AG [Berlin] | Bayer and Associ-ation Nationale de la Recherche et de la Technologie (CIFRE)
International audience
Afficher plus [+] Moins [-]anglais. The genus Spodoptera (Lepidoptera: Noctuidae) comprises some of the most polyphagous and destructive agricultural pests worldwide. The success of many species of this genus is due to their striking abilities to adapt to a broad range of host plants. Superfamilies of detoxification genes play a crucial role in the adaption to overcome plant defense mechanisms mediated by numerous secondary metabolites and toxins. Over the past decade, a substantial amount of expression data in Spodoptera larvae was produced for those genes in response to xenobiotics such as plant secondary metabolites, but also insecticide exposure. However, this information is scattered throughout the literature and in most cases does not allow to clearly identify candidate genes involved in hostplant adaptation and insecticide resistance. In the present review, we analyzed and compiled information on close to 600 pairs of inducers (xenobiotics) and induced genes from four main Spodoptera species: S. exigua, S. frugiperda, S. littoralis and S. litura. The cytochrome P450 monooxygenases (P450s; encoded by CYP genes) were the most upregulated detoxification genes across the literature for all four species. Most of the data was provided from studies on S. litura, followed by S. exigua, S. frugiperda and S. littoralis. We examined whether these detoxification genes were reported for larval survival under xenobiotic challenge in forward and reverse genetic studies. We further analyzed whether biochemical assays were carried out showing the ability of corresponding enzymes and transporters to breakdown and excrete xenobiotics, respectively. This revealed a clear disparity between species and the lack of genetic and biochemical information in S. frugiperda. Finally, we discussed the biological importance of detoxification genes for this genus and propose a workflow to study the involvement of these enzymes in an ecological and agricultural context.
Afficher plus [+] Moins [-]Mots clés AGROVOC
Informations bibliographiques
Cette notice bibliographique a été fournie par Institut national de la recherche agronomique
Découvrez la collection de ce fournisseur de données dans AGRIS