Mercury species in the nests and bodies of soil-feeding termites, Silvestritermes spp. (Termitidae, Syntermitinae), in French Guiana
2019
Diouf, Michel | Sillam-Dussès, David | Alphonse, Vanessa | Frechault, Sophie | Miambi, Edouard | Mora, Philippe | Institut d'écologie et des sciences de l'environnement de Paris (iEES Paris) ; Institut National de la Recherche Agronomique (INRA)-Sorbonne Université (SU)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS) | Laboratoire Eau Environnement et Systèmes Urbains (LEESU) ; AgroParisTech-École des Ponts ParisTech (ENPC)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)
International audience
Afficher plus [+] Moins [-]anglais. Mercury pollution is currently a major public health concern, given the adverse effects of mercury on wildlife and humans. Soil plays an essential role in speciation of mercury and its global cycling, while being a habitat for a wide range of terrestrial fauna. Soil fauna, primarily soil-feeding taxa that are in intimate contact with soil pollutants are key contributors in the cycling of soil mercury and might provide relevant indications about soil pollution. We studied the enrichment of various mercury species in the nests and bodies of soil-feeding termites Silvestritermes spp. in French Guiana. Soil-feeding termites are the only social insects using soil as both shelter and food and are major decomposers of organic matter in neotropical forests. Nests of S. minutus were depleted in total and mobile mercury compared to nearby soil. In contrast, they were enriched 17 times in methylmercury. The highest concentrations of methylmercury were found in body of both studied termite species, with mean bioconcentration factors of 58 for S. minutus and 179 for S. holmgreni relative to the soil. The assessment of the body distribution of methylmercury in S. minutus showed concentrations of 221 ng g−1 for the guts and even higher for the gut-free carcasses (683 ng g−1), suggesting that methylmercury is not confined to the gut where it was likely produced, but rather stored in various tissues. This enrichment in the most toxic form of Hg in termites may be of concern on termite predators and the higher levels in the food chain that may be endangered through prey-to-predator transfers and bioaccumulation. Soil-feeding termites appear to be promising candidates as bio-indicators of mercury pollution in soils of neotropical rainforest ecosystems.
Afficher plus [+] Moins [-]Informations bibliographiques
Cette notice bibliographique a été fournie par Institut national de la recherche agronomique
Découvrez la collection de ce fournisseur de données dans AGRIS