Transcriptome survey of the anhydrobiotic tardigrade <it>Milnesium tardigradum </it>in comparison with <it>Hypsibius dujardini </it>and <it>Richtersius coronifer</it>
2010
Reuter Dirk | Wełnicz Weronika | Schnölzer Martina | Dandekar Thomas | Förster Frank | Grohme Markus A | Mali Brahim | Schill Ralph O | Frohme Marcus
<p>Abstract</p> <p>Background</p> <p>The phenomenon of desiccation tolerance, also called anhydrobiosis, involves the ability of an organism to survive the loss of almost all cellular water without sustaining irreversible damage. Although there are several physiological, morphological and ecological studies on tardigrades, only limited DNA sequence information is available. Therefore, we explored the transcriptome in the active and anhydrobiotic state of the tardigrade <it>Milnesium tardigradum </it>which has extraordinary tolerance to desiccation and freezing. In this study, we present the first overview of the transcriptome of <it>M. tardigradum </it>and its response to desiccation and discuss potential parallels to stress responses in other organisms.</p> <p>Results</p> <p>We sequenced a total of 9984 expressed sequence tags (ESTs) from two cDNA libraries from the eutardigrade <it>M. tardigradum </it>in its active and inactive, anhydrobiotic (tun) stage. Assembly of these ESTs resulted in 3283 putative unique transcripts, whereof ~50% showed significant sequence similarity to known genes. The resulting unigenes were functionally annotated using the Gene Ontology (GO) vocabulary. A GO term enrichment analysis revealed several GOs that were significantly underrepresented in the inactive stage. Furthermore we compared the putative unigenes of <it>M. tardigradum </it>with ESTs from two other eutardigrade species that are available from public sequence databases, namely <it>Richtersius coronifer </it>and <it>Hypsibius dujardini</it>. The processed sequences of the three tardigrade species revealed similar functional content and the <it>M. tardigradum </it>dataset contained additional sequences from tardigrades not present in the other two.</p> <p>Conclusions</p> <p>This study describes novel sequence data from the tardigrade <it>M. tardigradum</it>, which significantly contributes to the available tardigrade sequence data and will help to establish this extraordinary tardigrade as a model for studying anhydrobiosis. Functional comparison of active and anhydrobiotic tardigrades revealed a differential distribution of Gene Ontology terms associated with chromatin structure and the translation machinery, which are underrepresented in the inactive animals. These findings imply a widespread metabolic response of the animals on dehydration. The collective tardigrade transcriptome data will serve as a reference for further studies and support the identification and characterization of genes involved in the anhydrobiotic response.</p>
Afficher plus [+] Moins [-]Informations bibliographiques
Cette notice bibliographique a été fournie par Directory of Open Access Journals
Découvrez la collection de ce fournisseur de données dans AGRIS