Parsimonious Gaussian Process Models for the Classification of Multivariate Remote Sensing Images
2014
Fauvel, Mathieu | Bouveyron, Charles | Girard, Stéphane | Dynamiques Forestières dans l'Espace Rural (DYNAFOR) ; Institut National de la Recherche Agronomique (INRA)-École nationale supérieure agronomique de Toulouse (ENSAT) ; Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT) | Mathématiques Appliquées Paris 5 (MAP5 - UMR 8145) ; Université Paris Descartes - Paris 5 (UPD5)-Institut National des Sciences Mathématiques et de leurs Interactions - CNRS Mathématiques (INSMI-CNRS)-Centre National de la Recherche Scientifique (CNRS) | Modelling and Inference of Complex and Structured Stochastic Systems (MISTIS) ; Centre Inria de l'Université Grenoble Alpes ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jean Kuntzmann (LJK) ; Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Centre National de la Recherche Scientifique (CNRS)
hal-01062378
Afficher plus [+] Moins [-]International audience
Afficher plus [+] Moins [-]anglais. A family of parsimonious Gaussian process models is presented. They allow to construct a Gaussian mixture model in a kernel feature space by assuming that the data of each class live in a specific subspace. The proposed models are used to build a kernel Markov random field (pGPMRF), which is applied to classify the pixels of a real multivariate remotely sensed image. In terms of classification accuracy, some of the proposed models perform equivalently to a SVM but they perform better than another kernel Gaussian mixture model previously defined in the literature. The pGPMRF provides the best classification accuracy thanks to the spatial regularization.
Afficher plus [+] Moins [-]Informations bibliographiques
Cette notice bibliographique a été fournie par Institut national de la recherche agronomique
Découvrez la collection de ce fournisseur de données dans AGRIS