Combined Gelatin-Chondroitin Sulfate Hydrogels with graphene nanoparticles
2022
Hermida-Merino, Carolina | Valcárcel Barros, Jesús | Vázquez, José Antonio | Cabaleiro, David | Moya-López, Carmen | Piñeiro, Manuel M. | Hermida-Merino, Daniel | European Commission | Agencia Estatal de Investigación (España)
10 pages, 5 figures, 3 tables
Afficher plus [+] Moins [-]Creating flexible, high-strength hydrogels from harmless, low-cost natural polymers is an area of intense research today due to their potential applications in the biomedical field, which demands materials with ambivalent physicochemical features. In particular, great efforts were devoted to the preparation of sustainable biohydrogels, composed of hydrophilic networks of renewable, biocompatible, biodegradable, and low-cost biopolymers. Bionanocomposites are a promising synthetic approach to combine specific multifunctional materials with targeted physicochemical properties. Novel bionanocomposite hydrogels were designed by combining both chondroitin sulfate (CS) as well as gelatin (GE) obtained from the waste generated by the fish industries to form double fibre networks with tailored properties. In addition, hybrid bionanocomposites were achieved by introducing graphene nanoparticles (xGnP) into the double fibrillar network (GE/CS) to enhance the physicochemical properties. The bionanocomposite nanostructures were characterized by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimeter (DSC) while their rheological properties and thermal stability were determined by rheological and thermogravimetric analyses (TGA), respectively. The likely interactions between CS and gelatin in the GE/CS hydrogel network were proved by ATR-FTIR spectroscopy. The incorporation of xGnP improved the mechanical properties of the GE/CS fibrillary network by an order of magnitude in the shear storage modulus. Eventually, the generated bionanocomposites hydrogels and bionanocomposite hybrid hydrogels have promising potential for applications in many biomedical fields, including drug delivery and tissue engineering by mimicking tissue extracellular matrix components such as the gelatin for collagen and the CS in the cartilage
Afficher plus [+] Moins [-]The authors acknowledge the financial support received from Project KET4F-Gas-SOE2/P1/P0823, which is co-financed by the European Regional Development Fund within the framework of Interreg Sudoe Programme and project PID2019-105827RB-I00–Agencia Estatal de Investigación, Spain
Afficher plus [+] Moins [-]Peer reviewed
Afficher plus [+] Moins [-]Mots clés AGROVOC
Informations bibliographiques
Cette notice bibliographique a été fournie par Instituto de Investigaciones Marinas
Découvrez la collection de ce fournisseur de données dans AGRIS