Use of Geopolymerized Fly Ash with GGBS as a Barrier for Waste Containment Facilities
2024
S. S. S. Saranya and S. N. Maya Naik
The present paper reports the results of experimental investigations performed to examine the feasibility of using fly ash (FA) and ground-granulated blast furnace slag (GGBS) geopolymers as barrier materials for waste containment facilities. The alkaline geopolymer is a blend of FA and GGBS with sodium hydroxide in concentrations varying from 1 to 5. The important properties of most barrier materials include strength and hydraulic conductivity. While FA can develop compressive strength through pozzolanic reactions, polymerized FA develops tensile strength. For the construction of barriers for landfills with higher heights, tensile strength assumes importance. To further improve the strength, FA can be amended with GGBS. Results indicate that the FA-GGBS mixture in the ratio of 40:60, when cured, exhibited higher strength at any molar concentration. Further, the hydraulic conductivity of the material, which is predominant for barriers in waste containment facilities, is studied. To examine the impact of the presence of heavy metals in the leachates, batch adsorption studies were executed on a 40% FA- 60% GGBS mixture. Leachate with nickel and lead were adapted for their retention within the barrier. It has been observed that the geopolymerized FA and GGBS can retain ionic metals. The retention capacity of heavy metals is due to their precipitation in the voids of the barrier material enabling further reduction in the hydraulic conductivity making geopolymer a sustainable barrier material.
Afficher plus [+] Moins [-]Mots clés AGROVOC
Informations bibliographiques
Cette notice bibliographique a été fournie par Directory of Open Access Journals
Découvrez la collection de ce fournisseur de données dans AGRIS