Application of Machine Learning for Bulbous Bow Optimization Design and Ship Resistance Prediction
2025
Yujie Shen | Shuxia Ye | Yongwei Zhang | Liang Qi | Qian Jiang | Liwen Cai | Bo Jiang
Resistance is a key index of a ship’s hydrodynamic performance, and studying the design of the bulbous bow is an important method to reduce ship resistance. Based on the ship resistance sample data obtained from computational fluid dynamics (CFD) simulation, this study uses a machine learning method to realize the fast prediction of ship resistance corresponding to different bulbous bows. To solve the problem of insufficient accuracy in the single surrogate model, this study proposes a CBR surrogate model that integrates convolutional neural networks with backpropagation and radial basis function models. The coordinates of the control points of the NURBS surface at the bulbous bow are taken as the design variables. Then, a convergence factor is introduced to balance the global and local search abilities of the whale algorithm to improve the convergence speed. The sample space is then iteratively searched using the improved whale algorithm. The results show that the mean absolute error and root mean square error of the CBR model are better than those of the BP and RBF models. The accuracy of the model prediction is significantly improved. The optimized bulbous bow design minimizes the ship resistance, which is reduced by 4.95% compared with the initial ship model. This study provides a reliable and efficient machine learning method for ship resistance prediction.
Afficher plus [+] Moins [-]Informations bibliographiques
Cette notice bibliographique a été fournie par Directory of Open Access Journals
Découvrez la collection de ce fournisseur de données dans AGRIS