FAO AGRIS - Système international des sciences et technologies agricoles

Parametric and machine learning approaches to examine yield differences between control and treatment considering outliers and statistical biases: The case of insect resistant/herbicide tolerant (IR/HT) maize in Honduras

2025

Falck-Zepeda, José B. | Zambrano, Patricia | Sanders, Arie | Trabanino, Carlos Rogelio


Informations bibliographiques
Editeur
International Food Policy Research Institute
Langue
anglais
Format
application/pdf
Licence
Open Access
Type
Working Paper
Source
Falck-Zepeda, José B.; Zambrano, Patricia; Sanders, Arie; and Trabanino, Carlos Rogelio. 2025. Parametric and machine learning approaches to examine yield differences between control and treatment considering outliers and statistical biases: The case of insect resistant/herbicide tolerant (IR/HT) maize in Honduras. IFPRI Discussion Paper 2334. Washington, DC: International Food Policy Research Institute. https://hdl.handle.net/10568/174327

2025-07-17
Dublin Core
Consulter Google Scholar
Si vous remarquez des informations incorrectes dans cette référence bibliographique, veuillez nous contacter à l'adresse [email protected]