Research on the Recovery Technology and Application of Copper Resources from Mine Wastewater at High Altitudes
2025
Jianhui Wu | Xu Yan | Chengyun Zhou | Yun Meng
In this study, we studied the process of recovering copper from mine-leached water at an altitude of 4500 m. The process was ion exchange&ndash:esolution&ndash:nanofiltration&ndash:separation&ndash:cyclone electrodeposition. As a result, high-purity copper cathodes were produced. The study demonstrated that the maximum adsorption capacity of ion exchange resin D402 for Cu2+ reached 174.6 g/L and the efficiency of Cu2+ adsorption and eluent was found to be 97.2% and 94.2%, respectively. The results of Fourier Transform infrared spectroscopy (FTIR) analysis indicated that the resin contains -OH and -NH2. The lone pair electrons on O and N atoms can form coordination bonds with copper ions to form stable complexes. The results of X-ray photoelectron spectroscopy (XPS) analysis indicated that copper ions were absorbed into the resin. The recovery efficiency of Cu2+ throughout the entire process reaches 95.1%, and the purity of the resulting copper cathode reaches 99.997%. This method is distinguished by a straightforward process, minimal environmental impact, optimal operating conditions, high copper recovery efficiency, and a high copper grade.
Afficher plus [+] Moins [-]Mots clés AGROVOC
Informations bibliographiques
Cette notice bibliographique a été fournie par Multidisciplinary Digital Publishing Institute
Découvrez la collection de ce fournisseur de données dans AGRIS