Machine Learning Classification of Fertile and Barren Adakites for Refining Mineral Prospectivity Mapping: Geochemical Insights from the Northern Appalachians, New Brunswick, Canada
2025
Amirabbas Karbalaeiramezanali | Fazilat Yousefi | David R. Lentz | Kathleen G. Thorne
This study applies machine learning (ML) techniques to classify fertile [for porphyry Cu and (or) Au systems] and barren adakites using geochemical data from New Brunswick, Canada. It emphasizes that not all intrusive units, including adakites, are inherently fertile and should not be directly used as the heat source evidence layer in mineral prospectivity mapping without prior analysis. Adakites play a crucial role in mineral exploration by helping distinguish between fertile and barren intrusive units, which significantly influence ore-forming processes. A dataset of 99 fertile and 66 barren adakites was analyzed using seven ML models: support vector machine (SVM), neural network, random forest (RF), decision tree, AdaBoost, gradient boosting, and logistic regression. These models were applied to classify 829 adakite samples from around the world into fertile and barren categories, with performance evaluated using area under the curve (AUC), classification accuracy, F1 score, precision, recall, and Matthews correlation coefficient (MCC). SVM achieved the highest performance (AUC = 0.91), followed by gradient boosting (0.90) and RF (0.89). For model validation, 160 globally recognized fertile adakites were selected from the dataset based on well-documented fertility characteristics. Among the tested models, SVM demonstrated the highest classification accuracy (93.75%), underscoring its effectiveness in distinguishing fertile from barren adakites for mineral prospectivity mapping. Statistical analysis and feature selection identified middle rare earth elements (REEs), including Gd and Dy, with Hf, as key indicators of fertility. A comprehensive analysis of 1596 scatter plots, generated from 57 geochemical variables, was conducted using linear discriminant analysis (LDA) to determine the most effective variable pairs for distinguishing fertile and barren adakites. The most informative scatter plots featured element vs. element combinations (e.g., Ga vs. Dy, Ga vs. Gd, and Pr vs. Gd), followed by element vs. major oxide (e.g., Fe2O3T vs. Gd and Al2O3 vs. Hf) and ratio vs. element (e.g., La/Sm vs. Gd, Rb/Sr vs. Hf) plots, whereas major oxide vs. major oxide, ratio vs. ratio, and major oxide vs. ratio plots had limited discriminatory power.
Afficher plus [+] Moins [-]Mots clés AGROVOC
Informations bibliographiques
Cette notice bibliographique a été fournie par Multidisciplinary Digital Publishing Institute
Découvrez la collection de ce fournisseur de données dans AGRIS