Application of High-Resolution Regional Climate Model Simulations for Crop Yield Estimation in Southern Brazil
2025
Santiago Vianna Cuadra | Monique Pires Gravina de Oliveira | Daniel de Castro Victoria | Fabiani Denise Bender | Maria L. Bettolli | Silvina Solman | Rosmeri Porfírio da Rocha | Jesús Fernández | Josipa Milovac | Erika Coppola | Moira Doyle
This study is focused on assessing the impacts of different regional climate model targeted simulations performed at convection-permitting resolution (CPRCM) in the AgS crop model yield simulations, evaluating to what extent climate model uncertainty impacts the modeled yield&mdash:considering the spatial and temporal variability of crop yield simulations over central-south Brazil. The ensemble of CPRCMs has been produced as part of a Flagship Pilot Study (FPS-SESA) framework, endorsed by the Coordinated Regional Climate Downscaling Experiment (CORDEX). The AgS simulated crop yield exhibited significant differences, in both space and time, among the simulations driven by the different CPRCMs as well as when compared with the simulations driven by observations. Rainfall showed the highest uncertainty in CPRCM simulations, particularly in its spatial variability, whereas modeled temperature and solar radiation were generally more accurate and exhibited smaller spatial and temporal differences. The results evidenced the need for multi-model simulations to account for different uncertainty, from different climate models and climate models parameterizations, in crop yield estimations. Inter-institutional collaboration and coordinated science are key aspects to address these end-to-end studies in South America, since there is no single institution able to produce such CPRCM-CropModels ensembles.
Afficher plus [+] Moins [-]Mots clés AGROVOC
Informations bibliographiques
Cette notice bibliographique a été fournie par Multidisciplinary Digital Publishing Institute
Découvrez la collection de ce fournisseur de données dans AGRIS