A Lightweight Citrus Ripeness Detection Algorithm Based on Visual Saliency Priors and Improved RT-DETR
2025
Yutong Huang | Xianyao Wang | Xinyao Liu | Liping Cai | Xuefei Feng | Xiaoyan Chen
As one of the world&rsquo:s economically valuable fruit crops, citrus has its quality and productivity closely tied to the degree of fruit ripeness. However, accurately and efficiently detecting citrus ripeness in complex orchard environments for selective robotic harvesting remains a challenge. To address this, we constructed a citrus ripeness detection dataset under complex orchard conditions, proposed a lightweight algorithm based on visual saliency priors and the RT-DETR model, and named it LightSal-RTDETR. To reduce computational overhead, we designed the E-CSPPC module, which efficiently combines cross-stage partial networks with gated and partial convolutions, combined with cascaded group attention (CGA) and inverted residual mobile block (iRMB), which minimizes model complexity and computational demand and simultaneously strengthens the model&rsquo:s capacity for feature representation. Additionally, the Inner-SIoU loss function was employed for bounding box regression, while a weight initialization method based on visual saliency maps was proposed. Experiments on our dataset show that LightSal-RTDETR achieves a mAP@50 of 81%, improving by 1.9% over the original model while reducing parameters by 28.1% and computational cost by 26.5%. Therefore, LightSal-RTDETR effectively solves the citrus ripeness detection problem in orchard scenes with high complexity, offering an efficient solution for smart agriculture applications.
Afficher plus [+] Moins [-]Mots clés AGROVOC
Informations bibliographiques
Cette notice bibliographique a été fournie par Multidisciplinary Digital Publishing Institute
Découvrez la collection de ce fournisseur de données dans AGRIS