Structure, Mechanisms, and Impacts of Nocturnal Downslope Wind Events in the Taklimakan Desert
2025
Mohamed Elshora | Lian Su | Tianwen Wei | Haiyun Xia
This study used reanalysis and lidar observations to investigate nocturnal downslope wind events in the Taklimakan desert, revealing their vertical structure, influencing factors, climatology, and impacts on boundary layer dynamics and dust emissions. 125 events were detected along the northern slope of the Kunlun Mountains, impacting Minfeng. Due to its weakness after onset, downslope flow is deflected horizontally when it encounters the opposing synoptic winds. The continued radiative cooling, dense air drainage, and adiabatic warming intensify downslope flow as the night progresses, causing it to gradually sink and overcome the opposing synoptic winds. Downslope wind events typically occur between an hour before and two hours after sunset, with the strongest occurring at or before sunset due to the longer period of radiative cooling and the coincidence with early evening instability conditions. Strong events occur under weak stability conditions as a stable atmosphere with a strong inversion layer can inhibit sinking motion. Most events, even the strongest ones, occur under dry conditions due to enhanced radiative cooling. Mechanical turbulence occurs when downslope flow hits the surface, whereas thermal turbulence occurs when warmer, downslope air weakens the lower atmosphere&rsquo:s temperature inversion. Downslope wind events significantly raise dust emissions in the Taklimakan desert.
Afficher plus [+] Moins [-]Mots clés AGROVOC
Informations bibliographiques
Cette notice bibliographique a été fournie par Multidisciplinary Digital Publishing Institute
Découvrez la collection de ce fournisseur de données dans AGRIS