Interactive, Shallow Machine Learning-Based Semantic Segmentation of 2D and 3D Geophysical Data from Archaeological Sites
2025
Lieven Verdonck | Michel Dabas | Marc Bui
In recent decades, technological developments in archaeological geophysics have led to growing data volumes, so that an important bottleneck is now at the stage of data interpretation. The manual delineation and classification of anomalies are time-consuming, and different methods for (semi-)automatic image segmentation have been proposed, based on explicitly formulated rulesets or deep convolutional neural networks (DCNNs). So far, these have not been used widely in archaeological geophysics because of the complexity of the segmentation task (due to the low contrast between archaeological structures and background and the low predictability of the targets). Techniques based on shallow machine learning (e.g., random forests, RFs) have been explored very little in archaeological geophysics, although they are less case-specific than most rule-based methods, do not require large training sets as is the case for DCNNs, and can easily handle 3D data. In this paper, we show their potential for geophysical data analysis. For the classification on the pixel level, we use ilastik, an open-source segmentation tool developed in medical imaging. Algorithms for object classification, manual reclassification, post-processing, vectorisation, and georeferencing were brought together in a Jupyter Notebook, available on GitHub (version 7.3.2). To assess the accuracy of the RF classification applied to geophysical datasets, we compare it with manual interpretation. A quantitative evaluation using the mean intersection over union metric results in scores of ~60%, which only slightly increases after the manual correction of the RF classification results. Remarkably, a similar score results from the comparison between independent manual interpretations. This observation illustrates that quantitative metrics are not a panacea for evaluating machine-generated geophysical data interpretation in archaeology, which is characterised by a significant degree of uncertainty. It also raises the question of how the semantic segmentation of geophysical data (whether carried out manually or with the aid of machine learning) can best be evaluated.
Afficher plus [+] Moins [-]Mots clés AGROVOC
Informations bibliographiques
Cette notice bibliographique a été fournie par Multidisciplinary Digital Publishing Institute
Découvrez la collection de ce fournisseur de données dans AGRIS