Affiner votre recherche
Résultats 1-10 de 26
Observations on transplacental infection with bluetongue virus in sheep.
1985
Richardson C. | Taylor W.P. | Terlecki S. | Gibbs E.P.J.
Detection of viral antigens in bluetongue virus-infected ovine tissues, using the peroxidase-antiperoxidase technique.
1985
Cherrington J.M. | Ghalib H.W. | Sawyer M.M. | Osburn B.I.
Humoral immune response of calves to bluetongue virus infection.
1987
MacLachlan N.J. | Heidner H.W. | Fuller F.J.
Diagnostic reliability of different RT-PCR protocols for the detection of bluetongue virus serotype 14 (BTV-14)
2017
Orłowska Anna | Żmudziński Jan F. | Smreczak Marcin | Trębas Paweł | Marzec Anna
Introduction: The reverse transcription polymerase chain reaction (RT-PCR) is one of the most extensively used methods for identification of animals infected with bluetongue virus (BTV). There are several RT-PCR protocols published and several real-time RT-PCR (rtRT-PCR) commercial kits available on the market. Because Poland faced BTV-14 infection in 2012, different protocols were implemented in the country to confirm the RT-PCR results positive for this virus. The article presents a comparative study of several RT-PCR protocols and discusses their diagnostic reliability and applicability.
Afficher plus [+] Moins [-]Implications of a conserved region of bluetongue virus protein VP2 in cross-neutralisation of bluetongue virus serotypes
2020
Shiva J. Jyothi | Sunil R. Patil | Narasimha Y. Reddy | Rao P. Panduranga | Uma Madala | Gnana M. Prakash | Kalyani Putty
Bluetongue (BT) is a vector-borne disease of ruminants caused by Bluetongue virus (BTV). Twenty-nine different serotypes of BTV are currently reported throughout the world. The main objective of this study is the development of a subunit vaccine model that could potentially be adapted to provide broad spectrum protection against multiple BTV serotypes, which the conventional vaccines fail to address. To this end, three different BTV proteins (conserved region of viral protein [VP]2, VP5 and NS1) were expressed and purified in an Escherichia coli expression system. The immunogenicity of these proteins was tested in murine models using the MontanideTM ISA 201 VG adjuvant. BALB/c mice were immunised thrice (with individual proteins and a mixture of three proteins) at two-week intervals and were monitored until Day 40 post-infection/vaccination. Protein-specific antibodies directed against the recombinant proteins were detected by indirect enzyme-linked immunosorbent assay. Neutralising antibody (Nab) titres and cross-neutralisation against a range of BTV serotypes (BTV-1, -2, -4, -5, -9, -10, -12, -16, -21, -23 and -24) were determined by serum neutralisation test. The recombinant proteins elicited higher Nab titres compared with the inactivated vaccine group, except for BTV-1, where the inactivated vaccine group elicited higher Nab titres. Additive effect of the three proteins was not observed as the Nab titres generated with a combination of conserved VP2, VP5 and NS1 was similar to those of the individual protein groups. Whilst BTV-12 could only be neutralised by serum raised against the inactivated vaccine group, BTV-5 and -24 could not be neutralised by any of the groups tested. Our cumulative data suggest that the conserved regions of VP2 (cVP2), VP5 and NS1 could play an important part in the novel vaccine design against multiple BTV serotypes. Importantly, given that VP2 was already known to elicit a serotype-specific immune response against BT, we report, for the first time, that the conserved region of VP2 has the ability to induce cross-protective immune response.
Afficher plus [+] Moins [-]Detection of bluetongue virus from blood of infected sheep by use of an antigen-capture enzyme-linked immunosorbent assay after amplification of the virus in cell culture
1993
Mecham, J.O.
An antigen-capture ELISA was used to detect bluetongue virus (BTV) from blood of infected sheep. A rabbit-origin capture antibody and a mouse-origin detection antibody combined with biotin-avidin amplification were used for the assay. The antigen-capture ELISA could not detect virus directly from the blood of infected sheep because of low virus titer. To enhance detection, virus from infected blood was amplified in cell culture. Virus could then be detected from cell culture supernatant fluids, using the ELISA. This amplification step increased the sensitivity of the assay comparable to that of assays performed in cell culture measuring cytopathic effects. The ELISA procedure was specific for BTV and did not mistakenly identify the antigenically related epizootic hemorrhagic disease virus. The antigen-capture ELISA permitted indirect quantitation and identification of BTV from the blood of infected sheep.
Afficher plus [+] Moins [-]Comparison of slot blot nucleic acid hybridization, immunofluorescence, and virus isolation techniques to detect bluetongue virus in blood mononuclear cells from cattle with experimentally induced infection
1992
De la Concha-Bermejillo, A. | Schore, C.E. | Dangler, C.A. | de Mattos, C.C. | de Mattos, C.A. | Osburn, B.I.
A slot blot hybridization technique was applied detection of bluetongue virus (BTV) in blood mononuclear cells (BMNC) obtained from cattle with experimentally induced infection. This technique lacked sensitivity to detect the viral nucleic acid directly in clinical specimens. When aliquots of mononuclear cells from these cattle were cultivated in vitro for 10 days to amplify virus titer, only 33.3% of the samples collected during viremia gave a positive signal in the slot blot hybridization format. By contrast results for 34.3% of noncultured and 63.3% of cultured mononuclear cell samples collected during viremia were positive by immunofluorescence. The average number of infected cells, as detected by immunofluorescence in the noncultured mononuclear cell samples, was 1 to 5/300,000, and was usually > 10/300,000 in the cultured cell samples. Virus was isolated from all postinoculation blood samples obtained from 4 heifers that were seronegative at the time of inoculation, but was not isolated from any of the preinoculation samples, or from any of the postinoculation samples obtained from 2 heifers that were seropositive at the time of inoculation. When virus isolation was attempted from separated mononuclear cells in 2 heifers, 43.7% of the noncultured and 87.5% of the cultured samples had positive results.
Afficher plus [+] Moins [-]Prevalence of bluetongue virus expression in leukocytes from experimentally infected ruminants
1993
Ellis, J.A. | Coen, M.L. | Maclachlan, N.J. | Wilson, W.C. | Williams, E.S. | Leudke, A.J.
Replication of bluetongue virus (BTV) in leukocytes from the blood of sheep, cattle, elk, and mule deer inoculated with BTV serotype 10 or 17 was assessed by immunocytochemical staining and dot blot northern hybridization to determine if differences in the prevalence of infection in this blood fraction might account for the differences in clinical disease among these species. Viremia was confirmed by virus isolation in all inoculated animals. Analysis of leukocytes with monoclonal antibodies specific for BTV proteins revealed low numbers of infected leukocytes in only 2 sheep 8 days after inoculation with BTV serotype 10. Most of the cells expressing BTV were identified morphologically as monocytes; approximately 10% of infected cells were lymphocytes. Bluetongue virus was not detected by use of dot-blot hybridization on samples of blood. Our results suggest that differential infection of leukocytes does not account for the pronounced differences in clinical signs and pathologic changes among ruminants.
Afficher plus [+] Moins [-]Serologic and virologic evidence of bluetongue virus infection in cattle and sheep in Mexico
1989
Stott, J.L. | Blanchard-Channell, M. | Osburn, B.I. | Riemann, H.P. | Obeso, R.C.
Three independent 1-year studies were conducted during 3 consecutive years to better define the prevalence of bluetongue virus (BTV) infection in Mexico. Serologic data were obtained by use of agar-gel immunodiffusion for identification of BTV group-reactive antibodies, and virologic data were obtained by virus isolation. Samples were obtained from sheep in 6 states over a 1-year period, with 9% seropositive; samples were obtained from cattle in 11 states during the same 1-year period, with 35% seropositive. Two years later, samples were obtained from cattle in 4 additional states, with 69% seropositive. Virus isolation was conducted on pooled blood samples obtained from cattle in 7 states. Six virus isolates were recovered and included 2 isolates each of BTV serotypes 11 and 13 and 1 isolated each of serotypes 10 and 17. All virus isolates were partially characterized by electrophoretic analysis of genomic RNA migration profiles (electropherotypes) in polyacrylamide gels. All Mexican isolates of BTV differed considerably in electropherotype profile, as compared with their respective US prototype strain of the same serotype. Such differences appeared to be much more extensive than those described to exist between numerous California isolates of the same serotype.
Afficher plus [+] Moins [-]Implications of a conserved region of bluetongue virus protein VP2 in cross-neutralisation of bluetongue virus serotypes
2020
Jyothi, Shiva J.(P.V. Narsimha Rao Telangana Veterinary University College of Veterinary Science Department of Veterinary Biotechnology) | Patil, Sunil R.(P.V. Narsimha Rao Telangana Veterinary University College of Veterinary Science Department of Veterinary Biotechnology) | Reddy, Narasimha Y.(P.V. Narsimha Rao Telangana Veterinary University College of Veterinary Science Department of Veterinary Biotechnology) | Panduranga, Rao P.(Biovet Pvt Ltd.) | Madala, Uma(Ella Foundation) | Prakash, Gnana M.(P.V. Narsimha Rao Telangana Veterinary University College of Veterinary Science Department of Animal Genetics and Breeding) | Putty, Kalyani(P.V. Narsimha Rao Telangana Veterinary University College of Veterinary Science Department of Veterinary Biotechnology)
Bluetongue (BT) is a vector-borne disease of ruminants caused by Bluetongue virus (BTV). Twenty-nine different serotypes of BTV are currently reported throughout the world. The main objective of this study is the development of a subunit vaccine model that could potentially be adapted to provide broad spectrum protection against multiple BTV serotypes, which the conventional vaccines fail to address. To this end, three different BTV proteins (conserved region of viral protein [VP]2, VP5 and NS1) were expressed and purified in an Escherichia coli expression system. The immunogenicity of these proteins was tested in murine models using the MontanideTM ISA 201 VG adjuvant. BALB/c mice were immunised thrice (with individual proteins and a mixture of three proteins) at two-week intervals and were monitored until Day 40 post-infection/vaccination. Protein-specific antibodies directed against the recombinant proteins were detected by indirect enzyme-linked immunosorbent assay. Neutralising antibody (Nab) titres and cross-neutralisation against a range of BTV serotypes (BTV-1, -2, -4, -5, -9, -10, -12, -16, -21, -23 and -24) were determined by serum neutralisation test. The recombinant proteins elicited higher Nab titres compared with the inactivated vaccine group, except for BTV-1, where the inactivated vaccine group elicited higher Nab titres. Additive effect of the three proteins was not observed as the Nab titres generated with a combination of conserved VP2, VP5 and NS1 was similar to those of the individual protein groups. Whilst BTV-12 could only be neutralised by serum raised against the inactivated vaccine group, BTV-5 and -24 could not be neutralised by any of the groups tested. Our cumulative data suggest that the conserved regions of VP2 (cVP2), VP5 and NS1 could play an important part in the novel vaccine design against multiple BTV serotypes. Importantly, given that VP2 was already known to elicit a serotype-specific immune response against BT, we report, for the first time, that the conserved region of VP2 has the ability to induce cross-protective immune response.
Afficher plus [+] Moins [-]