Affiner votre recherche
Résultats 1-10 de 11
Toxicity and kinetics of amitraz in dogs.
1996
Hugnet C. | Buronfosse F. | Pineau X. | Cadore J.L. | Lorgue G. | Berny P.J.
Comparison of ethanol and 4-methylpyrazole as treatments for ethylene glycol intoxication in cats.
1994
Dial S.M. | Thrall M.A.H. | Hamar D.W.
The efficacy of 4-methylpyrazole (4-MP) and ethanol as treatment for ethylene glycol (EG) intoxication in cats was compared. Twenty-two cats were assigned at random to 6 experimental groups. Cats of 1 experimental group were given only 4-MP; those of another experimental group were given only EG. Cats of 3 experimental groups were intoxicated with EG and given 4-MP at 0 hour or 2 or 3 hours after EG ingestion, and those of 1 experimental group were given EG and treated with ethanol 3 hours after EG ingestion. Physical, biochemical, hematologic, blood gas, serum and urine EG concentrations, and urinalysis findings were evaluated at 0, 1, 3, 6, 9, 12, 24, 48, and 72 hours, 1 week, and 2 weeks after EG ingestion, or 4-MP treatment in cats of the 4-MP only group. The half-life of EG and percentage of ingested EG excreted unchanged were determined for each group. 4-Methylpyrazole treatment at 0 hour was most effective at preventing metabolism of EG. 4-Methylpyrazole was not effective in preventing development of renal failure when given 2 or 3 hours after EG ingestion. Ethanol given 3 hours after EG ingestion was successful in preventing development of renal dysfunction in 2 of the 6 cats treated 3 hours after EG ingestion. Of the remaining 4 cats treated with ethanol, 2 developed transient renal dysfunction and 2 developed acute oliguric renal failure and were euthanatized. 4-Methylpyrazol given 2 or 3 hours after EG ingestion was less effective in preventing EG metabolism than was ethanol given 3 hours after EG ingestion. Therefore 4-MP, at the dose found to be effective in dogs, cannot be recommended as an alternative to ethanol for treatment of EG intoxication in cats.
Afficher plus [+] Moins [-]Comparison of N-acetylcysteine and methylene blue, alone or in combination, for treatment of acetaminophen toxicosis in cats.
1995
Rumbeiha W.K. | Lin Y.S. | Oehme F.W.
Acetaminophen is widely used in human beings for analgesic purposes, but is one of the most frequent causes of poisoning in cats. Acetaminophen-poisoned cats develop methemoglobinemia and sometimes hepatic failure. To determine the benefit of using methylene blue, a treatment for methemoglobinemia, along with N-acetylcysteine (NAC), the recommended treatment for acetaminophen-poisoned cats, groups of 3 male and 3 female cats each were given methylene blue NAC, or both after administration of acetaminophen (120 mg/kg of body weight, PO). Male cats seemed more susceptible than female cats to acetaminophen toxicosis, because 3 males died of hepatic failure (2 cats given acetaminophen/methylene blue and 1 given acetaminophen/NAC/methylene blue). Although NAC alone seemed to elicit the best overall response, methylene blue, alone or in combination with NAC, may be useful in female cats.
Afficher plus [+] Moins [-]Influence of tolazoline on caudal epidural administration of xylazine in cattle.
1990
Skarda R.T. | St Jean G. | Muir W.W. III
Eight adult female cattle (6 Holstein, 1 Jersey, 1 Brown Swiss) were used to determine the antagonistic effects of tolazoline, an alpha 2-adrenoceptor antagonist, on xylazine-induced (via caudal epidural administration) depression of CNS, respiratory, and cardiovascular activity and rumen motility. A 2% solution of xylazine HCl was injected into the epidural space at the first coccygeal interspace, using a dosage of 0.05 mg/kg of body weight, diluted to a 5-ml volume with sterile water, and administered at a rate of approximately 1 ml/30 s. Eight minutes after xylazine injection, either tolazoline (0.3 mg/kg) or saline solution (4 ml) was administered IV. All 8 cattle were treated, using both regimens in a random sequence; at least 1 week elapsed between treatments. Epidurally administered xylazine induced caudal analgesia (S3 to coccyx), as evaluated by no response to superficial and deep muscular pinprick, and induced sedation, cardiopulmonary depression, and inhibition of rumen motility, but all cattle remained standing. Tolazoline effectively reversed xylazine-induced rumen hypomotility, and partially antagonized xylazine-induced cardiopulmonary depression without affecting sedation and desirable local (S3 to coccyx) analgesic effects.
Afficher plus [+] Moins [-]Prevention of leucaena toxicosis of cattle in Florida by ruminal inoculation with 3-hydroxy-4-(1H)-pyridone-degrading bacteria
1989
Hammond, A.C. | Allison, M.J. | Williams, M.J. | Prine, G.M. | Bates, D.B.
Ruminal microorganisms in cattle at a Florida agriculture research station did not have the ability to detoxify leucaena by degradation of 3-hydroxy-4(lH)-pyridone (3,4,-DHP), but a DHP isomer (2,3-DHP) was degraded in some cattle. Cattle with microorganisms that degraded 2,3-DHP were mostly Senepol cattle imported from St. Croix, US Virgin Islands, where leucaena is an indigenous species. Hereford cattle at the research station in Florida generally did not degrade 3,4-DHP or 2,3-DHP. An experiment was conducted in which a pure culture of 3,4-DHP-degrading bacteria was inoculated into Hereford cattle (with ruminal fistula) grazing leucaena. The bacteria successfully colonized the rumen of recipient cattle and persisted through the following winter when there was no leucaena in the diet.
Afficher plus [+] Moins [-]Influence of tolazoline on caudal epidural administration of xylazine in cattle
1990
Skarda, R.T. | St Jean, G. | Muir, W.W. III.
Eight adult female cattle (6 Holstein, 1 Jersey, 1 Brown Swiss) were used to determine the antagonistic effects of tolazoline, an alpha 2-adrenoceptor antagonist, on xylazine-induced (via caudal epidural administration) depression of CNS, respiratory, and cardiovascular activity and rumen motility. A 2% solution of xylazine HCl was injected into the epidural space at the first coccygeal interspace, using a dosage of 0.05 mg/kg of body weight, diluted to a 5-ml volume with sterile water, and administered at a rate of approximately 1 ml/30 s. Eight minutes after xylazine injection, either tolazoline (0.3 mg/kg) or saline solution (4 ml) was administered IV. All 8 cattle were treated, using both regimens in a random sequence; at least 1 week elapsed between treatments. Epidurally administered xylazine induced caudal analgesia (S3 to coccyx), as evaluated by no response to superficial and deep muscular pinprick, and induced sedation, cardiopulmonary depression, and inhibition of rumen motility, but all cattle remained standing. Tolazoline effectively reversed xylazine-induced rumen hypomotility, and partially antagonized xylazine-induced cardiopulmonary depression without affecting sedation and desirable local (S3 to coccyx) analgesic effects.
Afficher plus [+] Moins [-]Cardiovascular effects of butorphanol in halothane-anesthetized dogs
1990
Greene, S.A. | Hartsfield, S.M. | Tyner, C.L.
Cardiovascular effects of butorphanol (0.2 mg/kg of body weight, IV) and responses associated with subsequent administration of naloxone (0.04 mg/kg, IV) were studied in halothane (1.2% end-tidal concentration)-anesthetized dogs. Transient, but statistically significant (P < 0.05), decreases in heart rate, mean and diastolic arterial blood pressures, and rate-pressure product were observed after butorphanol administration. Cardiac index, stroke volume, and systemic vascular resistance did not change significantly. Except for the decrease in heart rate, changes in the values of the cardiovascular variables measured after butorphanol administration did not appear to be clinically relevant. Sixty minutes after butorphanol administration, naloxone was given. Statistically significant (P < 0.05) increases in heart rate, arterial blood pressures, cardiac index, and rate-pressure product, along with dysrhythmias were observed. Stroke volume and systemic vascular resistance remained unchanged after administration of naloxone. Naloxone administration was associated with changes indicative of increased myocardial oxygen consumption.
Afficher plus [+] Moins [-]Effects of idazoxan, tolazoline, and yohimbine on xylazine-induced respiratory changes and central nervous system depression in ewes
1989
Hsu, W.H. | Hanson, C.E. | Hembrough, F.B. | Schaffer, D.D.
We compared the ability of 3 alpha 2-adrenoreceptor antagonists, idazoxan (0.05 mg/kg), tolazoline (2 mg/kg), and yohimbine (0.2 mg/kg) to reverse xylazine (0.3 mg/kg)-induced respiratory changes and CNS depression in 6 ewes. Once weekly, each ewe was given a random IV treatment of xylazine, followed in 5 minutes by either an antagonist or 0.9% NaCl solution. Xylazine alone caused recumbency for 54.2 +/- 5.3 minutes (mean +/- SEM). Xylazine also increased respiratory rate and decreased PaCO2 for at least 45 minutes, but did not significantly change arterial pH or PaCO2. Idazoxan and tolazoline were equally effective in reversing the respiratory actions of xylazine; however, yohimbine was less effective in reducing the respiratory rate and was ineffective in antagonizing the decreased PaO2. Idazoxan and tolazoline decreased the duration of xylazine-induced recumbency to 6.3 +/- 0.6 and 9.5 +/- 2.3 minutes, respectively, whereas yohimbine did not significantly change this effect of xylazine. Thus, at the dosages studied, idazoxan and tolazoline appeared to be more effective than yohimbine in reversing the respiratory and CNS depressant actions of xylazine in sheep.
Afficher plus [+] Moins [-]Hemodynamic responses of the equine digit to intravenous and digital arterial infusion of dopamine
1990
Hunt, R.J. | Moore, J.N. | Allen, D.
In 6 adult horses anesthetized with pentobarbital, the hemodynamic responses of the equine digit to infusion of dopamine were evaluated by use of an isolated extra corporeal pump perfused digital preparation. Digital blood flow was maintained at a constant rate that was independent of systemic hemodynamic changes. Three sequential experiments were performed on each horse. In the first experiment (n = 6), dopamine was infused IV at rates of 1.0, 2.5, and 5.0 microgram/kg/min. For the second experiment (n = 5), dopamine (400 microgram/ml) was infused into the digital artery at the rates of 0.07, 0.7, and 1.2 ml/min. The third experiment (n = 5) consisted of a 5-minute intra-arterial infusion of phentoalamine followed by the intra-arterial infusion of dopamine while continuing the infusion of phentolamine. Digital venous, arterial, and capillary pressures, total digital vascular resistance, and precapillary to postcapillary resistance ratios were determined in each experiment. Systemic infusion of dopamine did not induce changes in the hemodynamics of the digital vasculature. Digital arterial infusion of dopamine alone resulted in a dose-dependent increase in arterial pressure, total digital vascular resistance, and an increase in the precapillary to postcapillary resistance ratio. Phentolamine attenuated the vasoconstrictive response elicited by intra-arterial infusion of dopamine.
Afficher plus [+] Moins [-]Naloxone reversal of oxymorphone effects in dogs
1989
Copland, V.S. | Haskins, S.C. | Patz, J.
Oxymorphone was administered IV to dogs 4 times at 20-minute intervals (total dosage, 1 mg/kg of body weight, IV) on 2 separate occasions. Minute ventilation, mixed-expired carbon dioxide concentration, arterial and mixed-venous pH and blood gas tensions, arterial, central venous, pulmonary arterial, and pulmonary wedge pressures, and cardiac output were measured. Physiologic dead space, base deficit, oxygen transport, and vascular resistance were calculated before and at 5 minutes after the first dose of oxymorphone (0.4 mg/kg) and at 15 minutes after the first and the 3 subsequent doses of oxymorphone (0.2 mg/kg). During 1 of the 2 experiments in each dog, naloxone was administered 20 minutes after the last dose of oxymorphone; during the alternate experiment, naloxone was not administered. In 5 dogs, naloxone was administered IV in titrated dosages (0.005 mg/kg) at 1-minute intervals until the dogs were able to maintain sternal recumbency, and in the other 5 dogs, naloxone was administered IM as a single dose (0.04 mg/kg). Naloxone (0.01 mg/kg, IV or 0.04 mg/kg, IM) transiently reversed most of the effects of oxymorphone. Within 20 to 40 minutes after IV naloxone administration and within 40 to 70 minutes after IM naloxone administration, most variables returned to the approximate values measured before naloxone administration. The effects of oxymorphone outlasted the effects of naloxone; cardiovascular and pulmonary depression and sedation recurred in all dogs. Four hours and 20 minutes after the last dose of oxymorphone, alertness, responsiveness, and coordination improved in all dogs after IM administration of naloxone. Cardiac arrhythmia, hypertension, or excitement was not observed after naloxone administration.
Afficher plus [+] Moins [-]