Affiner votre recherche
Résultats 1-10 de 18
Effects of age on temperature-related variation in motor nerve conduction velocity in healthy chickens
1995
Bagley, R.S. | Wheeler, S.J. | Gay, J.M.
Muscle potentials evoked by stimulation of the sciatic nerve were evaluated in 4- and 15-week-old chickens. Each bird was anesthetized and slowly cooled externally from a normal body temperature of 40 C to 28 C, and motor nerve conduction velocities were measured at various intervals during cooling. Motor nerve conduction velocity decreased linearly with decreasing limb temperature in both groups. The rate of change in motor nerve conduction velocity per degree in 2 groups (2.13 m/s/C vs 1.84 m/s/C) fell just short of a statistically significant difference (P = 0.0508), indicating that an age-related effect on temperature-associated variation in motor nerve conduction velocity may be present.
Afficher plus [+] Moins [-]Effects of hydrogen peroxide on isolated trachealis muscle of horses
1995
Olszewski, M.A. | Robinson, N.E. | Yu, M.F. | Derksen, F.J.
During acute bouts of recurrent airway obstruction (heaves) in horses, neutrophils that are capable of increased production of reactive oxygen species accumulate in the airways. In the study reported here, the effect of hydrogen peroxide (H2O2; 1 micromolar to 0.1M), one of these reactive oxygen species products, on the responses of isolated trachealis muscle of horses was determined. Before and after incubation with H2O2, contractile responses to acetylcholine, electrical field stimulation (EFS), 127 mM KCl, and relaxation responses to isoproterenol and activation of the nonadrenergic noncholinergic inhibitory response (iNANC) were evaluated. Beginning at 1 mM, H2O2 contracted trachealis muscle in a concentration-dependent manner. This contraction was unaffected by atropine (1 micromolar), tetrodotoxin (1 micromolar), or 1 micromolar meclofenamate. Contraction of trachealis muscle in response to H2O2 is, therefore, not attributable to release of prostaglandins, acetylcholine, or other neurotransmitters. Above a concentration of 0.1 mM, H2O2 depressed the responses to EFS. acetylcholine, and KCl in a concentration-dependent manner. At 0.1M, H2O2 decreased the maximal responses to EFS, acetylcholine, and KCl by 62.7 +/- 7.2, 60.58 +/- 6.12, and 37.8 +/- 9.54%, respectively. In the presence of meclofenamate (1 micromolar), partial but significant protection against 1 to 100 mM H2O2 was observed. In tracheal strips contracted with 0.3 micromolar methacholine, H2O2 had no effect on the isoproterenol concentration-response curve. Up to a concentration of 100 mM, H2O2 had no effect on iNANC response. However, in the presence of 100 mM H2O2, this response was abolished in 2 of 4 horses. We conclude that high concentrations of H2O2 affected the responses of airway smooth muscle by actions on neurotransmission, muscarinic receptors, and downstream from receptors; some of the H2O2 effects were in part mediated by cyclooxygenase products; and H2O2 had no effect on beta-adrenergic- or iNANC-induced relaxation.
Afficher plus [+] Moins [-]Neuromuscular blockade by use of atracurium in anesthetized llamas
1993
Hildebrand, S.V. | Hill, T. III.
Anesthesia was induced in 8 healthy llamas by administration of guaifenesin and ketamine, and was maintained with halothane in oxygen. On 2 separate experimental days, atracurium was given to induce 95 to 99% reduction of evoked hind limb digital extensor tension (twitch). For the first part of the study, atracurium was given iv as repeat boluses, with muscle twitch strength being allowed to return without intervention to 75% of baseline after each bolus before the subsequent bolus was given. A total of 5 bolus doses of atracurium was given. For the first bolus, 0.15 mg/kg of body weight iv, and for subsequent boluses, 0.08 mg/kg, induced desired relaxation. Onset of relaxation was slightly more rapid for repeat, compared with initial, bolus. Duration of relaxation and recovery time were similar to initial and repeat doses. Maximal twitch reduction was observed in 4 +/- 0.2 minutes (mean +/- SEM). Duration from maximal twitch reduction to 10% recovery was 6.3 +/- 0.4 minutes. Twitch recovery from 10 to 50% of baseline took 11.6 +/- 0.6 minutes. Twitch recovery from 10 to 75% recovery took 19.5 +/- 1.1 minutes. Recovery from 10% twitch to 50% fade took 12.8 +/- 0.5 minutes. Fade at 50% recovery of twitch was 39 +/- 0.02%. Significant (P < 0.05) animal-to-animal variation was observed in twitch recovery times. For the second part of the study, atracurium was initially given IV as a 0.15-mg/kg bolus, followed by infusion for 1 to 2 hours. Infusion rate required some early adjustment to maintain desired relaxation, but the rate that prevailed was 1.07 +/- 0.07 ml/kg/h (0.4 mg of atracurium/ml of saline solution). Recovery of muscle twitch was similar to that previously mentioned for repeat bolus administration, At the end of the study, edrophonium (0.5 mg/kg) with atropine (0.01 mg/kg, IV) was effective in antagonizing residual neuromuscular blockade by atracurium. All llamas recovered without injury from anesthesia, although 1 llama had a rough recovery. It was concluded that atracurium can provide neuromuscular blockade by either repeat bolus administration or continuous infusion in llamas.
Afficher plus [+] Moins [-]In vitro responses of distal airways in horses with recurrent airway obstruction
1991
Distal airway segments (ID, 3 to 4 mm; length, 5 mm) from 2 groups of horses were isolated and suspended in tissue baths filled with Krebs solution, aerated with 5% CO2 in oxygen and maintained at 37 C. Responses to exogenous acetylcholine, isoproterenol, or electrical field stimulation were compared. Control horses (n = 30) had no history of recurrent airway obstruction, whereas principal horses (n = 15) had recurrent airway obstruction and were studied during an acute episode of airway obstruction. Although the distal airways contracted in response to the cumulative half-logarithmic addition of acetylcholine (10(-10)M to 10(-3)M) in both groups, bronchi obtained from principals were less sensitive to acetylcholine than were bronchi obtained from controls. Tetrodotoxin-sensitive electrical field stimulation-induced contractions were observed in both groups of airways, but the tension achieved in principal bronchi was less than in controls. All electrical field stimulation-induced contractions were abolished by atropine, indicating that the only excitatory innervation of equine distal airways is through the parasympathetic system. To examine the effect of isoproterenol and determine inhibitory innervation, bronchi were precontracted with histamine. Electrical field stimulation did not cause relaxation of precontracted bronchi in either group, thus indicating that distal airways lack inhibitory innervation. Isoproterenol caused similar, dose-dependent relaxation in both groups.
Afficher plus [+] Moins [-]Measurement of anal and genitoanal reflexes in cats
1991
Cook, J.R. Jr | Oliver, J.E. Jr | Purinton, P.T.
Noninvasive determination of anal and genitoanal reflexes was evaluated in clinically normal cats. Thirty adult mixed-breed cats (15 sexually intact or castrated males, 15 sexually intact or spayed females) were sedated by IV administration of ketamine, acetylpromazine, and atropine. Anal reflexes were recorded from the anal sphincter muscle after ipsilateral and contralateral electrical stimulation of the perineal skin. Genitoanal reflexes were recorded from the anal sphincter muscle after electrical stimulation of the penis or clitoris. An anal sphincter response to tibial nerve stimulation was attempted. Anal reflexes from ipsilateral and contralateral stimulations and a genitoanal reflex were detected in all cats. Anal sphincter responses to tibial nerve stimulation were inconsistent (4/30) and were not included in any analyses. Anal reflexes had response latencies of 7.5 to 12.0 ms (ipsilateral stimulation) and 6.5 to 13 ms (contralateral stimulation). Genitoanal reflexes had latencies of 9.0 to 13.0 ms (males) and 6.5 to 9.0 ms (females). Anal reflex latencies were significantly (P < 0.05) longer for contralateral, opposed to ipsilateral, stimulation and were significantly (P < 0.05) longer in males than in females. Genitoanal reflex latencies were also significantly (P < 0.05) longer in males than in females, reflecting the more peripheral stimulation site in males. Anal reflex responses could be recorded in 2 feline clinic patients with such severe perineal trauma that pudendal nerve function could not be manually evaluated. A potentially favorable prognosis was given in each instance on the basis of detection of the response. One cat eventually recovered. The other was euthanatized because of other problems, and the sacral part of the spinal cord, sacral nerve roots, and pudendal nerves were found to be intact at necropsy.
Afficher plus [+] Moins [-]Evoked potentials induced by transcranial stimulation in dogs
1990
Kraus, K.H. | O'Brien, D. | Pope, E.R. | Kraus, B.H.
Evoked potentials were induced by transcranial stimulation and recovered from the spinal cord, and the radial and sciatic nerves in six dogs. Stimulation was accomplished with an anode placed on the skin over the area of the motor cortex. Evoked potentials were recovered from the thoracic and lumbar spinal cord by electrodes placed transcutaneously in the ligamentum flavum. Evoked potentials were recovered from the radial and sciatic nerves by surgical exposure and electrodes placed in the perineurium. Signals from 100 repetitive stimuli were averaged and analyzed. Waveforms were analyzed for amplitude and latency. Conduction velocities were estimated from wave latencies and distance traveled. The technique allowed recovery of evoked potentials that had similar characteristics among all dogs. Conduction velocities of potentials recovered from the radial and sciatic nerves suggested stimulation of motor pathways; however, the exact origin and pathway of these waves is unknown.
Afficher plus [+] Moins [-]Response of equine airway smooth muscle to acetylcholine and electrical stimulation in vitro
1989
Mason, D.E. | Muir, W.W. | Olson, L.E.
Smooth muscle strips from the midcervical portion of the trachea and bronchial smooth muscle strips from third-generation airways of horses were placed in tissue baths, and isometric contractile force was measured. Active force was measured in response to electrical stimulation and exogenous acetylcholine. Square-wave electrical stimuli were applied at various voltages (10, 12, 15, 18, 20, 25 V), frequencies (3, 5, 10, 15, 20, 25, 30 Hz), and pulse durations (0.2, 0.5, 1.0, 1.5, 2.0 ms). Isometric contractile force increased as voltage, frequency, and pulse duration increased. Maximal contractile response to electrical stimulation was obtained at 18 V, 25 Hz, and 0.5 ms. Atropine (10-6M) or tetrodotoxin (3 X 10-6M) blocked the contraction, indicating that the contractile response was attributable to the release of neurotransmitter from cholinergic nerves. Cumulative concentration-response curves to acetylcholine (10-9M through 10-4M) were determined. Isometric contractile force increased as acetylcholine concentration increased. There was a significant (P less than 0.05) difference in the 50% effective dose for acetylcholine in tracheal smooth muscle and bronchial smooth muscle. The mean (+/- SD) contractile response to maximal electrical stimulus was 89% (+/- 7.4%) of that in response to 10-4M acetylcholine in tracheal smooth muscle and was 68% (+/- 10.4%) of the response to 10-4M acetylcholine in bronchial smooth muscle.
Afficher plus [+] Moins [-]Influence of electrode placement on effective field strength in the superficial digital flexor tendon of horses Texte intégral
2006
Lin, Y.L. | Moolenar, H. | Weeren, P.R van | Lest, C.H.A van de
Objective-To determine the relationship between the output of an electrical treatment device and the effective field strength in the superficial digital flexor tendon of horses. Sample Population-Cadaver horse forelimbs without visible defects (n = 8) and 1 live pony. Procedure-Microcurrents were generated by a microcurrent electrical therapy device and applied in proximodistal, dorsopalmar, and mediolateral directions in the entire forelimbs, dissected tendons, and the pony with various output settings. Corresponding field strengths in the tendons were measured. Results-A linear relationship was detected between current and field strength in all conditions and in all 3 directions. In dissected tendons, significant differences were detected among all 3 directions, with highest field strength in the proximodistal direction and lowest in the dorsopalmar direction. In the entire forelimbs, field strength in the proximodistal direction was significantly lower than in the mediolateral direction. Results in the pony were similar to those in the entire forelimbs. Conclusions and Clinical Relevance-Electrode placement significantly affected field strength in the target tissue. Many surrounding structures caused considerable reduction of field strength in the target tissue. These factors should be taken into account when establishing protocols for electrical current-based therapeutic devices if these devices are proven clinically effective.
Afficher plus [+] Moins [-]Evaluation of administration of isoflurane at approximately the minimum alveolar concentration on depression of a nociceptive withdrawal reflex evoked by transcutaneous electrical stimulation in ponies Texte intégral
2006
Spadavecchia, C. | Levionnois, O. | Kronen, P.W. | Leandri, M. | Spadavecchia, L. | Schatzmann, U.
Objective-To investigate effects of isoflurane at approximately the minimum alveolar concentration (MAC) on the nociceptive withdrawal reflex (NWR) of the forelimb of ponies as a method for quantifying anesthetic potency. Animals-7 healthy adult Shetland ponies. Procedure-Individual MAC (iMAC) for isoflurane was determined for each pony. Then, effects of isoflurane administered at 0.85, 0.95, and 1.05 iMAC on the NWR were assessed. At each concentration, the NWR threshold was defined electromyographically for the common digital extensor and deltoid muscles by stimulating the digital nerve; additional electrical stimulations (3, 5, 10, 20, 30, and 40 mA) were delivered, and the evoked activity was recorded and analyzed. After the end of anesthesia, the NWR threshold was assessed in standing ponies. Results-Mean +/- SD MAC of isoflurane was 1.0 +/- 0.2%. The NWR thresholds for both muscles increased significantly in a concentration-dependent manner during anesthesia, whereas they decreased in awake ponies. Significantly higher thresholds were found for the deltoid muscle, compared with thresholds for the common digital extensor muscle, in anesthetized ponies. At each iMAC tested, amplitudes of the reflex responses from both muscles increased as stimulus intensities increased from 3 to 40 mA. A concentration-dependent depression of evoked reflexes with reduction in slopes of the stimulus-response functions was detected. Conclusions and Clinical Relevance-Anesthetic-induced changes in sensory-motor processing in ponies anesthetized with isoflurane at concentrations of approximately 1.0 MAC can be detected by assessment of NWR. This method will permit comparison of effects of inhaled anesthetics or anesthetic combinations on spinal processing in equids.
Afficher plus [+] Moins [-]Effects of alpha 2-adrenergic receptor agonist and antagonist drugs on cholinergic contraction in bovine tracheal smooth muscle in vitro
1995
Manning, M.M. | Broadstone, R.V.
Effects of alpha 2-adrenergic receptor stimulation on the cholinergic contractile response of bovine tracheal smooth muscle were studied. To determine the presence and function of alpha 2-adrenergic receptors on cholinergic nerves innervating bovine tracheal muscle, effects of 2 alpha 2-adrenoceptor agonists and an antagonist were determined. Muscular contractions were elicited by either electrical field stimulation (EFS) or exogenous acetylcholine (ACH). The contractile response to EFS and exogenous ACH was examined for each tissue. Electrical field stimulation of bovine tracheal smooth muscle caused contractions that were completely abolished by atropine, indicating the predominant excitatory innervation of bovine trachea is cholinergic. The alpha 2-adrenoceptor agonists clonidine and medetomidine (10(-6)M to 10(-4)M) concentration-dependently inhibited the contractile response to EFS but not the response to exogenous ACH. Contractions induced by EFS were significantly (P < 0.05) inhibited in clonidine (10(-4) M)-treated tissues at low frequencies (0.1 to 10 Hz), whereas medetomidine (10(-5)M, 10(-4)M) inhibited contractions at all frequencies (0.1 to 30 Hz). Inhibitory effects of the alpha 2-adrenoceptor agonists clonidine and medetomidine were attenuated by the alpha 2-adrenoceptor antagonist tolazoline. The alpha 2-agonists used in this study appear to cause prejunctional inhibition of cholinergic nerves, because the smooth muscle contractions elicited by EFS, but not exogenous ACH, were inhibited, compared with controls.
Afficher plus [+] Moins [-]