Affiner votre recherche
Résultats 1-2 de 2
Macro-microscopic research in reideer (Rangifer tarandus) hoof suitable for efficient locomotion on complex grounds
2017
Zhang, Rui | Qiao, Yu | Ji, Qiaoli | Ma, Songsong | Li, Jianqiao
Introduction: Reindeer are adapted to long distance migration. This species can cope with variations in substrate, especially in ice and snow environment. However, few detailed studies about reindeer hoof are available. Thus this article describes the results of studies on macro- and micro-structures of reindeer hoof.Material and Methods: The gross anatomy of the reindeer hooves was examined. Stereo microscope (SM) and a scanning electron microscope (SEM) were used to observe four key selected positions of reindeer hooves. Moreover, element contents of the three selected positions of reindeer hooves were analysed using the SEM equipped with energy dispersive spectroscope.Results: Hoof bone structures were similar to other artiodactyl animals. In the microscopic analysis, the surfaces of the ungula sphere and ungula sole presented irregular laminated structure. Ungula edge surfaces were smooth and ungula cusp surfaces had unique features. Aside from C, O, and N, reindeer hooves contained such elements as S, Si, Fe, Al, and Ca. The content of the elements in different parts varied. Ti was the particular element in the ungula sole, and ungula edge lacked Mg and S which other parts contained.Conclusion: The macro- and micro-structures of the reindeer hooves showed high performance of skid and abrasion resistance. It is most probably essential to the long distance migration for the animals.
Afficher plus [+] Moins [-]Histomorphologic evaluation of extracorporeal shock wave therapy of the fourth metatarsal bone and the origin of the suspensory ligament in horses without lameness
2006
Bischofberger, A.S. | Ringer, S.K. | Geyer, H. | Imboden, I. | Ueltschi, G. | Lischer, C.J.
Objective-To determine via histologic examination and scintigraphy the effect of focused extracorporeal shock wave therapy (ESWT) on normal bone and the bone-ligament interface in horses. Animals-6 horses without lameness. Procedure-Origins of the suspensory ligament at the metacarpus (35-mm probe depth) and fourth metatarsal bone (5-mm probe depth) were treated twice (days 0 and 16) with 2,000 shocks (energy flux density, 0.15 mJ/mm2). One forelimb and 1 hind limb were randomly treated, and the contralateral limbs served as nontreated controls. Bone scans were performed on days -1 (before ESWT), 3, 16, and 19. Histomorphologic studies of control and treated tissues were performed on day 30. Results-ESWT significantly increased the number of osteoblasts but caused no damage to associated soft tissue structures and did not induce cortical microfractures. A significant correlation between osteoblast numbers and radiopharmaceutical uptake was noticed on lateral views of the hind limb on days 3 and 16 and on caudal views of the forelimb on day 3. Conclusions and Clinical Relevance-Results suggested that ESWT has the potential to increase osteoblast numbers in horses. The correlation between increased osteoblast numbers and radiopharmaceutical uptake 3 days and 16 days after the first ESWT suggested that stimulation of osteogenesis occurred soon after ESWT. No damage to bone or the bone-ligament interface should occur at the settings used in this study, and ESWT can therefore be administered safely in horses.
Afficher plus [+] Moins [-]