Affiner votre recherche
Résultats 1-7 de 7
Ozone exposure and flux-based response functions for photosynthetic traits in wheat, maize and poplar Texte intégral
2015
Bagard, Matthieu | Jolivet, Yves | Hasenfratz-Sauder, Marie-Paule | Gérard, Joëlle | Dizengremel, Pierre | Le Thiec, Didier
Ozone exposure and flux-based response functions for photosynthetic traits in wheat, maize and poplar Texte intégral
2015
Bagard, Matthieu | Jolivet, Yves | Hasenfratz-Sauder, Marie-Paule | Gérard, Joëlle | Dizengremel, Pierre | Le Thiec, Didier
Ozone exposure- and dose-response relationships based on photosynthetic leaf traits (CO2 assimilation, chlorophyll content, Rubisco and PEPc activities) were established for wheat, maize and poplar plants grown in identical controlled conditions, providing a comparison between crop and tree species, as well as between C3 and C4 plants. Intra-specific variability was addressed by comparing two wheat cultivars with contrasting ozone tolerance. Depending on plant models and ozone levels, first-order, second-order and segmented linear regression models were used to derive ozone response functions. Overall, flux-based functions appeared superior to exposure-based functions in describing the data, but the improvement remained modest. The best fit was obtained using the POD0.5 for maize and POD3 for poplar. The POD6 appeared relevant for wheat, although intervarietal differences were found. Our results suggest that taking into account the dynamics of leaf antioxidant capacity could improve current methods for ozone risk assessment for plants.
Afficher plus [+] Moins [-]Ozone exposure and flux-based response functions for photosynthetic traits in wheat, maize and poplar Texte intégral
2015
Bagard, Matthieu | Jolivet, Yves | Hasenfratz-Sauder, Marie-Paule | Gérard, Joëlle | Dizengremel, Pierre | Le Thiec, Didier | Biogéochimie et écologie des milieux continentaux (Bioemco) ; École normale supérieure - Paris (ENS-PSL) ; Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Université Pierre et Marie Curie - Paris 6 (UPMC)-AgroParisTech-Centre National de la Recherche Scientifique (CNRS) | Ecologie et Ecophysiologie Forestières [devient SILVA en 2018] (EEF) ; Institut National de la Recherche Agronomique (INRA)-Université de Lorraine (UL) | ANR (Vulnoz)
International audience | Ozone exposure- and dose-response relationships based on photosynthetic leaf traits (CO2 assimilation, chlorophyll content, Rubisco and PEPc activities) were established for wheat, maize and poplar plants grown in identical controlled conditions, providing a comparison between crop and tree species, as well as between C3 and C4 plants. Intra-specific variability was addressed by comparing two wheat cultivars with contrasting ozone tolerance. Depending on plant models and ozone levels, first-order, second-order and segmented linear regression models were used to derive ozone response functions. Overall, flux-based functions appeared superior to exposure-based functions in describing the data, but the improvement remained modest. The best fit was obtained using the POD0.5 for maize and POD3 for poplar. The POD6 appeared relevant for wheat, although intervarietal differences were found. Our results suggest that taking into account the dynamics of leaf antioxidant capacity could improve current methods for ozone risk assessment for plants.
Afficher plus [+] Moins [-]Ozone exposure and flux-based response functions for photosynthetic traits in wheat, maize and poplar Texte intégral
2015
Bagard, Matthieu | Jolivet, Yves | Hasenfratz-Sauder, Marie-Paule | Gérard, Joëlle | Dizengremel, Pierre | Le Thiec, Didier
Ozone exposure- and dose-response relationships based on photosynthetic leaf traits (CO2 assimilation, chlorophyll content, Rubisco and PEPc activities) were established for wheat, maize and poplar plants grown in identical controlled conditions, providing a comparison between crop and tree species, as well as between C3 and C4 plants. Intra-specific variability was addressed by comparing two wheat cultivars with contrasting ozone tolerance. Depending on plant models and ozone levels, first-order, second-order and segmented linear regression models were used to derive ozone response functions. Overall, flux-based functions appeared superior to exposure-based functions in describing the data, but the improvement remained modest. The best fit was obtained using the POD0.5 for maize and POD3 for poplar. The POD6 appeared relevant for wheat, although intervarietal differences were found. Our results suggest that taking into account the dynamics of leaf antioxidant capacity could improve current methods for ozone risk assessment for plants.
Afficher plus [+] Moins [-]Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites Texte intégral
2015
Amaral-Rogers, V. | Belzunces, Luc | Bonmatin, J-M. | Chagnon, M. | Downs, C. | Furlan, L. | Gibbons, D.W. | Giorio, C. | Girolami, V. | Goulson, D. | Kreutzweiser, D.P. | Krupke, C. | Liess, M. | Long, E. | McField, M. | Mineau, P. | Mitchell, E.A.D. | Morrissey, C.A. | Noome, D.A. | Pisa, L | Settele, J. | Stark, J. D. | Tapparo, A. | Van Dyck, H. | van Praagh, J.P. | Van der Sluijs, J. P. | Whitehorn, P.R. | Wiemers, M.
Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites Texte intégral
2015
Amaral-Rogers, V. | Belzunces, Luc | Bonmatin, J-M. | Chagnon, M. | Downs, C. | Furlan, L. | Gibbons, D.W. | Giorio, C. | Girolami, V. | Goulson, D. | Kreutzweiser, D.P. | Krupke, C. | Liess, M. | Long, E. | McField, M. | Mineau, P. | Mitchell, E.A.D. | Morrissey, C.A. | Noome, D.A. | Pisa, L | Settele, J. | Stark, J. D. | Tapparo, A. | Van Dyck, H. | van Praagh, J.P. | Van der Sluijs, J. P. | Whitehorn, P.R. | Wiemers, M.
Since their discovery in the late 1980s, neonicotinoid pesticides have become the most widely used class of insecticides worldwide, with large-scale applications ranging from plant protection (crops, vegetables, fruits),veterinary products, and biocides to invertebrate pest control in fish farming. In this review, we address the phenyl-pyrazole fipronil together with neonicotinoids because of similarities in their toxicity, physicochemical profiles, and presence in the environment. Neonicotinoids and fipronil currently account for approximately one third of the world insecticide market; the annual world production of the archetype neonicotinoid, imidacloprid, was estimated to be ca. 20,000 tonnes active substance in 2010. There were several reasons for the initialsuccess of neonicotinoids and fipronil: (1) there was no known pesticide resistance in target pests, mainly because of their recent development, (2) their physicochemical properties included many advantages over previous generations of insecticides (i.e., organophosphates, carbamates, pyrethroids, etc.), and (3) they shared an assumed reduced operator and consumer risk. Due to their systemic nature, they are taken up by the roots or leaves and translocated to all parts of the plant, which, in turn, makes them effectively toxic to herbivorous insects. The toxicity persists for a variable period of time—depending on the plant, its growth stage, and the amount of pesticide applied. Awide variety of applications are available, including the most common prophylactic non-Good Agricultural Practices (GAP) application by seed coating. As a result of their extensive use and physicochemical properties, these substances can be found in all environmental compartments including soil, water, and air. Neonicotinoids and fipronil operate by disrupting neural transmission in the central nervous system of invertebrates. Neonicotinoids mimic the action of neurotransmitters, while fipronil inhibits neuronal receptors. In doing so, they continuously stimulate neuronsleading ultimately to death of target invertebrates. Like virtually all insecticides, they can also have lethal and sublethal impacts on non-target organisms, including insect predators and vertebrates. Furthermore, a range of synergistic effects with other stressors have been documented. Here, we review extensively their metabolic pathways, showing how they form both compound-specific and common metabolites which can themselves be toxic. These may result in prolonged toxicity. Considering their wide commercial expansion, mode of action, the systemic properties in plants, persistence and environmental fate, coupled with limited information about the toxicity profiles of these compounds and their metabolites, neonicotinoids and fipronil may entail significant risks to the environment. A global evaluation of the potential collateral effects of their use is therefore timely. The present paper and subsequent chapters in this review of the global literature explore these risks and show a growing body of evidence that persistent, low concentrations of these insecticides pose serious risks of undesirable environmental impacts.
Afficher plus [+] Moins [-]Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites Texte intégral
2015
Simon-Delso, N. | Amaral-Rogers, V. | Belzunces, L. P. | Bonmatin, J. M. | Chagnon, M. | Downs, C. | Furlan, L. | Gibbons, D. W. | Giorio, C. | Girolami, V. | Goulson, D. | Kreutzweiser, D. P. | Krupke, C. H. | Liess, M. | Long, E. | McField, M. | Mineau, P. | Mitchell, E. A. D. | Morrissey, C. A. | Noome, D. A. | Pisa, L. | Settele, J. | Stark, J. D. | Tapparo, A. | Van Dyck, H. | Praagh, Jaap van | Van der Sluijs, J. P. | Whitehorn, P. R. | Wiemers, M.
Since their discovery in the late 1980s, neonicotinoid pesticides have become the most widely used class of insecticides worldwide, with large-scale applications ranging from plant protection (crops, vegetables, fruits), veterinary products, and biocides to invertebrate pest control in fish farming. In this review, we address the phenyl-pyrazole fipronil together with neonicotinoids because of similarities in their toxicity, physicochemical profiles, and presence in the environment. Neonicotinoids and fipronil currently account for approximately one third of the world insecticide market; the annual world production of the archetype neonicotinoid, imidacloprid, was estimated to be ca. 20,000 tonnes active substance in 2010. There were several reasons for the initial success of neonicotinoids and fipronil: (1) there was no known pesticide resistance in target pests, mainly because of their recent development, (2) their physicochemical properties included many advantages over previous generations of insecticides (i.e., organophosphates, carbamates, pyrethroids, etc.), and (3) they shared an assumed reduced operator and consumer risk. Due to their systemic nature, they are taken up by the roots or leaves and translocated to all parts of the plant, which, in turn, makes them effectively toxic to herbivorous insects. The toxicity persists for a variable period of time—depending on the plant, its growth stage, and the amount of pesticide applied. A wide variety of applications are available, including the most common prophylactic non-Good Agricultural Practices (GAP) application by seed coating. As a result of their extensive use and physicochemical properties, these substances can be found in all environmental compartments including soil, water, and air. Neonicotinoids and fipronil operate by disrupting neural transmission in the central nervous system of invertebrates. Neonicotinoids mimic the action of neurotransmitters, while fipronil inhibits neuronal receptors. In doing so, they continuously stimulate neurons leading ultimately to death of target invertebrates. Like virtually all insecticides, they can also have lethal and sublethal impacts on non-target organisms, including insect predators and vertebrates. Furthermore, a range of synergistic effects with other stressors have been documented. Here, we review extensively their metabolic pathways, showing how they form both compound-specific and common metabolites which can themselves be toxic. These may result in prolonged toxicity. Considering their wide commercial expansion, mode of action, the systemic properties in plants, persistence and environmental fate, coupled with limited information about the toxicity profiles of these compounds and their metabolites, neonicotinoids and fipronil may entail significant risks to the environment. A global evaluation of the potential collateral effects of their use is therefore timely. The present paper and subsequent chapters in this review of the global literature explore these risks and show a growing body of evidence that persistent, low concentrations of these insecticides pose serious risks of undesirable environmental impacts.
Afficher plus [+] Moins [-]Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites Texte intégral
2015 | 2014
Simon-Delso, Noa | Amaral-Rogers, Vanessa | Belzunces, Luc P | Bonmatin, Jean-Marc | Chagnon, Madeleine | Downs, Craig | Furlan, Lorenzo | Gibbons, David W | Giorio, Chiara | Girolami, Vincenzo | Goulson, Dave | Kreutzweiser, David P | Krupke, Christian H | Liess, Matthias | Whitehorn, Penelope R | Utrecht University | Buglife | French National Institute for Agricultural Research (INRA) | The National Center for Scientific Research (CNRS) | University of Quebec in Montreal (UQAM) | Haereticus Environmental Laboratory | Veneto Agricoltura | Royal Society for the Protection of Birds (RSPB) | University of Cambridge | University of Padua | University of Sussex | Natural Resources Canada | Purdue University | Helmholtz Centre for Environmental Research-UFZ, Germany | Biological and Environmental Sciences | 0000-0001-9852-1012
Since their discovery in the late 1980s, neonicotinoid pesticides have become the most widely used class of insecticides worldwide, with large-scale applications ranging from plant protection (crops, vegetables, fruits), veterinary products, and biocides to invertebrate pest control in fish farming. In this review, we address the phenyl-pyrazole fipronil together with neonicotinoids because of similarities in their toxicity, physicochemical profiles, and presence in the environment. Neonicotinoids and fipronil currently account for approximately one third of the world insecticide market; the annual world production of the archetype neonicotinoid, imidacloprid, was estimated to be ca. 20,000tonnes active substance in 2010. There were several reasons for the initial success of neonicotinoids and fipronil: (1) there was no known pesticide resistance in target pests, mainly because of their recent development, (2) their physicochemical properties included many advantages over previous generations of insecticides (i.e., organophosphates, carbamates, pyrethroids, etc.), and (3) they shared an assumed reduced operator and consumer risk. Due to their systemic nature, they are taken up by the roots or leaves and translocated to all parts of the plant, which, in turn, makes them effectively toxic to herbivorous insects. The toxicity persists for a variable period of time-depending on the plant, its growth stage, and the amount of pesticide applied. A wide variety of applications are available, including the most common prophylactic non-Good Agricultural Practices (GAP) application by seed coating. As a result of their extensive use and physicochemical properties, these substances can be found in all environmental compartments including soil, water, and air. Neonicotinoids and fipronil operate by disrupting neural transmission in the central nervous system of invertebrates. Neonicotinoids mimic the action of neurotransmitters, while fipronil inhibits neuronal receptors. In doing so, they continuously stimulate neurons leading ultimately to death of target invertebrates. Like virtually all insecticides, they can also have lethal and sublethal impacts on non-target organisms, including insect predators and vertebrates. Furthermore, a range of synergistic effects with other stressors have been documented. Here, we review extensively their metabolic pathways, showing how they form both compound-specific and common metabolites which can themselves be toxic. These may result in prolonged toxicity. Considering their wide commercial expansion, mode of action, the systemic properties in plants, persistence and environmental fate, coupled with limited information about the toxicity profiles of these compounds and their metabolites, neonicotinoids and fipronil may entail significant risks to the environment. A global evaluation of the potential collateral effects of their use is therefore timely. The present paper and subsequent chapters in this review of the global literature explore these risks and show a growing body of evidence that persistent, low concentrations of these insecticides pose serious risks of undesirable environmental impacts. | Additional co-authors: E. Long, M. McField, P. Mineau, E. A. D. Mitchell, C. A. Morrissey, D. A. Noome, L. Pisa, J. Settele, J. D. Stark, A. Tapparo, H. Van Dyck, J. Van Praagh, J. P. Van der Sluijs, M. Wiemers
Afficher plus [+] Moins [-]Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites | Pesticides néonicotinoïdes. Tendances, usages et modes d’action des métabolites Texte intégral
2014
Simon-Delso, N. | Amaral-Rogers, V. | Belzunces, L.P. | Bonmatin, Jean-Marc | Chagnon, M. | Downs, C. | Furlan, L. | Gibbons, D. W. | Giorio, C. | Girolami, V. | Goulson, D. | Kreutzweiser, D. P. | Krupke, C. H. | Liess, M. | Long, E. | Mcfield, M. | Mineau, P. | Mitchell, E. A. D. | Morrissey, C. A. | Noome, D. A. | Pisa, L. | Settele, J. | Stark, J. D. | Tapparo, A. | van Dyck, H. | van Praagh, J. | van Der Sluijs, J. P. | Whitehorn, P. R. | Wiemers, M. | Copernicus Institute of Sustainable Development [Utrecht] ; Universiteit Utrecht / Utrecht University [Utrecht] | Beekeeping Research and Information Center | Buglife | Abeilles et environnement (AE) ; Institut National de la Recherche Agronomique (INRA) | Centre de biophysique moléculaire (CBM) ; Université d'Orléans (UO)-Université de Tours (UT)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS)
. | Depuis leur découverte dans les années 1980, les pesticides néonicotinoïdes sont devenus la classe la plus largement utilisée des insecticides, dans le monde entier, avec des applications à grande échelle allant de la protection des plantes (cultures, légumes, fruits), aux produits vétérinaires et aux biocides pour le contrôle des invertébrés parasites en pisciculture. Dans cette revue, nous joignons la fipronil, un phénylpyrazole, aux néonicotinoïdes en raison de la similitude de leur toxicité, des profils physico-chimiques, et de leur présence dans l'environnement. Les néonicotinoïdes et le fipronil représentent actuellement environ un tiers du marché mondial des insecticides ; la production mondiale annuelle de l'archétype des néonicotinoïdes, l'imidaclopride, a été estimée au total à 20 000 tonnes de substance active en 2010. Le succès initial des néonicotinoïdes et du fipronil est dû à plusieurs raisons : (1) il n'y avait pas de résistance connue à ces pesticides chez les ravageurs cibles, principalement en raison de leur développement récent, (2) leurs propriétés physico-chimiques rassemblaient de nombreux avantages par rapport à celles des générations précédentes d’insecticides (c’est-à-dire, les organophosphorés, les carbamates, les pyréthrinoïdes, etc.), et,(3) ils partagent et supposent des risques réduits pour l’opérateur et le consommateur. En raison de leur nature systémique, ils sont absorbés par les racines ou les feuilles et transloqués à toutes les parties de la plante, laquelle, à son tour, est effectivement toxique pour les insectes herbivores. La toxicité persiste pendant une période de temps variable en fonction de la plante, de son stade de croissance, et de la quantité de pesticide appliquée. Une grande variété d'applications sont disponibles, y compris la NON Bonne Pratique Agricole(GAP)prophylactique d’application courante en enrobage de semences. En conséquence de leur utilisation extensive et de leurs propriétés physico-chimiques, ces substances peuvent être trouvés dans tous les compartiments environnementaux, y compris le sol, l'eau et l'air. Les néonicotinoïdes et le fipronil fonctionnent en perturbant la transmission nerveuse dans le système nerveux central des invertébrés.Les néonicotinoïdes imitent l'action des neurotransmetteurs, tandis que le fipronil inhibe les récepteurs neuronaux. Ce faisant, les premiers stimulent en permanence les neurones conduisant finalement les invertébrés cibles à la mort. Comme pratiquement tous les insecticides, ils peuvent également avoir des effets létaux et sublétaux sur les organismes non cibles, y compris les vertébrés prédateurs d'insectes. En outre, une gamme d’effets synergiques avec d'autres facteurs de stress a été documentée. Ici, nous passons en revue de façon extensive leurs voies métaboliques, montrant comment les composés spécifiques et les métabolites communs, lesquels peuvent eux-mêmes être toxiques, forment ensemble deux cas. Ceux-ci peuvent entraîner une toxicité prolongée. Compte tenu de leur large expansion commerciale, leur mode d'action, leurs propriétés systémiques chez les plantes, leur persistance et leur devenir environnemental, couplés avec des informations limitées sur les profils de toxicité de ces composés et de leurs métabolites, les néonicotinoïdes et le fipronil peuvent entraîner des risques importants pour l'environnement. Une évaluation globale des effets collatéraux potentiels de leur utilisation est donc opportune. Le présent document, et les chapitres suivants dans cette revue de la littérature mondiale, explorent ces risques et montrent une quantité croissante de preuves qui, sur la base de la persistance et de faibles concentrations de ces pesticides, posent de sérieux risques d’impacts environnementaux indésirables.
Afficher plus [+] Moins [-]Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites Texte intégral
2015
Simon-Delso, N | Amaral-Rogers, V. | Belzunces, Luc | Bonmatin, J-M. | Chagnon, M. | Downs, C. | Furlan, L. | Gibbons, D.W. | Giorio, C. | Girolami, V. | Goulson, D. | Kreutzweiser, D.P. | Krupke, C. | Liess, M. | Long, E. | Mcfield, M. | Mineau, P. | Mitchell, E.A.D. | Morrissey, C.A. | Noome, D.A. | Pisa, L | Settele, J. | Stark, J. D. | Tapparo, A. | van Dyck, H. | van Praagh, J.P. | van Der Sluijs, J. P. | Whitehorn, P.R. | Wiemers, M. | Universiteit Utrecht / Utrecht University [Utrecht] | Centre Apicole de Recherche et Information ; Partenaires INRAE | Buglife | Abeilles et environnement (AE) ; Institut National de la Recherche Agronomique (INRA) | Centre de biophysique moléculaire (CBM) ; Université d'Orléans (UO)-Université de Tours (UT)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS) | Département des Sciences Biologiques ; Université du Québec à Montréal = University of Québec in Montréal (UQAM) | Haereticus Environmental Laboratory ; Partenaires INRAE | Veneto Agricoltura | Centre for Conservation Science | Department of Chemistry ; University of Cambridge [UK] (CAM) | Università degli Studi di Padova = University of Padua (Unipd) | School of Life Sciences ; University of Sussex | Canadian Forest Service ; Natural Resources Canada (NRCan) | Department of Entomology ; Michigan State University [East Lansing] ; Michigan State University System-Michigan State University System | Helmholtz Zentrum für Umweltforschung = Helmholtz Centre for Environmental Research (UFZ) | Smithsonian Institution | Pierre Mineau Consulting ; Partenaires INRAE | Laboratory of Soil Biology ; Université de Neuchâtel = University of Neuchatel (UNINE) | Jardin Botanique de Neuchâtel | University of Saskatchewan [Saskatoon, Canada] (U of S) | Kijani ; Partenaires INRAE | Department of Community Ecology ; Helmholtz Zentrum für Umweltforschung = Helmholtz Centre for Environmental Research (UFZ) | German Centre for Integrative Biodiversity Research (iDiv) | Washington State University (WSU) | Université Catholique de Louvain = Catholic University of Louvain (UCL) | Scientific Advisor ; Partenaires INRAE | University of Bergen (UiB) | School of Natural Sciences ; University of Stirling
International audience | Since their discovery in the late 1980s, neonicotinoid pesticides have become the most widely used class of insecticides worldwide, with large-scale applications ranging from plant protection (crops, vegetables, fruits), veterinary products, and biocides to invertebrate pest control in fish farming. In this review, we address the phenyl-pyrazole fipronil together with neonicotinoids because of similarities in their toxicity, physicochemical profiles, and presence in the environment. Neonicotinoids and fipronil currently account for approximately one third of the world insecticide market; the annual world production of the archetype neonicotinoid, imidacloprid, was estimated to be ca. 20,000 tonnes active substance in 2010. There were several reasons for the initial success of neonicotinoids and fipronil: (1) there was no known pesticide resistance in target pests, mainly because of their recent development, (2) their physicochemical properties included many advantages over previous generations of insecticides (i.e., organophosphates, carbamates, pyrethroids, etc.), and (3) they shared an assumed reduced operator and consumer risk. Due to their systemic nature, they are taken up by the roots or leaves and translocated to all parts of the plant, which, in turn, makes them effectively toxic to herbivorous insects. The toxicity persists for a variable period of time—depending on the plant, its growth stage, and the amount of pesticide applied. Awide variety of applications are available, including the most common prophylactic non-Good Agricultural Practices (GAP) application by seed coating. As a result of their extensive use and physicochemical properties, these substances can be found in all environmental compartments including soil, water, and air. Neonicotinoids and fipronil operate by disrupting neural transmission in the central nervous system of invertebrates. Neonicotinoids mimic the action of neurotransmitters, while fipronil inhibits neuronal receptors. In doing so, they continuously stimulate neurons leading ultimately to death of target invertebrates. Like virtually all insecticides, they can also have lethal and sublethal impacts on non-target organisms, including insect predators and vertebrates. Furthermore, a range of synergistic effects with other stressors have been documented. Here, we review extensively their metabolic pathways, showing how they form both compound-specific and common metabolites which can themselves be toxic. These may result in prolonged toxicity. Considering their wide commercial expansion, mode of action, the systemic properties in plants, persistence and environmental fate, coupled with limited information about the toxicity profiles of these compounds and their metabolites, neonicotinoids and fipronil may entail significant risks to the environment. A global evaluation of the potential collateral effects of their use is therefore timely. The present paper and subsequent chapters in this review of the global literature explore these risks and show a growing body of evidence that persistent, low concentrations of these insecticides pose serious risks of undesirable environmental impacts.
Afficher plus [+] Moins [-]Effects of neonicotinoids and fipronil on non-target invertebrates Texte intégral
2015
Amaral-Rogers, V. | Belzunces, Luc | Bonmatin, J-M. | Downs, C.A. | Goulson, D. | Kreutzweiser, D.P. | Krupke, C. | Liess, M. | McField, M. | Morrissey, C.A. | Noome, D.A. | Settele, J. | Simon-Delso, N. | Stark, J. D. | Van der Sluijs, Jeroen P. | Van Dyck, H. | Wiemers, M.
Effects of neonicotinoids and fipronil on non-target invertebrates Texte intégral
2015
Amaral-Rogers, V. | Belzunces, Luc | Bonmatin, J-M. | Downs, C.A. | Goulson, D. | Kreutzweiser, D.P. | Krupke, C. | Liess, M. | McField, M. | Morrissey, C.A. | Noome, D.A. | Settele, J. | Simon-Delso, N. | Stark, J. D. | Van der Sluijs, Jeroen P. | Van Dyck, H. | Wiemers, M.
We assessed the state of knowledge regarding the effects of large-scale pollution with neonicotinoid insecticides and fipronil on non-target invertebrate species of terrestrial, freshwater and marine environments. A large section of the assessment is dedicated to the state of knowledge on sublethal effects on honeybees (Apis mellifera) because this important pollinator is the most studied non-target invertebrate species. Lepidoptera (butterflies and moths), Lumbricidae (earthworms), Apoidae sensu lato (bumblebees, solitary bees) and the section “other invertebrates” review available studies on the other terrestrial species. The sections on freshwater and marine species are rather short as little is known so far about the impact of neonicotinoid insecticides and fipronil on the diverse invertebrate fauna of these widely exposed habitats. For terrestrial and aquatic invertebrate species, the known effects of neonicotinoid pesticides and fipronil are described ranging from organismal toxicology and behavioural effects to population-level effects. For earthworms, freshwater and marine species, the relation of findings to regulatory risk assessment is described. Neonicotinoid insecticides exhibit very high toxicity to a wide range of invertebrates, particularly insects, and field-realistic exposure is likely to result in both lethal and a broad range of important sublethal impacts. Thereis a major knowledge gap regarding impacts on the grand majority of invertebrates, many of which perform essential roles enabling healthy ecosystem functioning. The data on the few non-target species on which field tests have been performed are limited by major flaws in the outdated test protocols. Despite large knowledge gaps and uncertainties, enough knowledge exists to conclude that existing levels of pollution with neonicotinoids and fipronil resulting from presently authorized uses frequently exceed the lowest observed adverse effect concentrations and are thus likely to have large-scale and wide ranging negative biological and ecological impacts on a wide range of non-target invertebrates in terrestrial, aquatic, marine and benthic habitats.
Afficher plus [+] Moins [-]Effects of neonicotinoids and fipronil on non-target invertebrates Texte intégral
2015
Pisa, L. W. | Amaral-Rogers, V. | Belzunces, L. P. | Bonmatin, J. M. | Downs, C. A. | Goulson, D. | Kreutzweiser, D. P. | Krupke, C. | Liess, M. | McField, M. | Morrissey, C. A. | Noome, D. A. | Settele, J. | Simon-Delso, N. | Stark, J. D. | Van der Sluijs, J. P. | Van Dyck, H. | Wiemers, M.
We assessed the state of knowledge regarding the effects of large-scale pollution with neonicotinoid insecticides and fipronil on non-target invertebrate species of terrestrial, freshwater and marine environments. A large section of the assessment is dedicated to the state of knowledge on sublethal effects on honeybees (Apis mellifera) because this important pollinator is the most studied non-target invertebrate species. Lepidoptera (butterflies and moths), Lumbricidae (earthworms), Apoidae sensu lato (bumblebees, solitary bees) and the section “other invertebrates” review available studies on the other terrestrial species. The sections on freshwater and marine species are rather short as little is known so far about the impact of neonicotinoid insecticides and fipronil on the diverse invertebrate fauna of these widely exposed habitats. For terrestrial and aquatic invertebrate species, the known effects of neonicotinoid pesticides and fipronil are described ranging from organismal toxicology and behavioural effects to population-level effects. For earthworms, freshwater and marine species, the relation of findings to regulatory risk assessment is described. Neonicotinoid insecticides exhibit very high toxicity to a wide range of invertebrates, particularly insects, and field-realistic exposure is likely to result in both lethal and a broad range of important sublethal impacts. There is a major knowledge gap regarding impacts on the grand majority of invertebrates, many of which perform essential roles enabling healthy ecosystem functioning. The data on the few non-target species on which field tests have been performed are limited by major flaws in the outdated test protocols. Despite large knowledge gaps and uncertainties, enough knowledge exists to conclude that existing levels of pollution with neonicotinoids and fipronil resulting from presently authorized uses frequently exceed the lowest observed adverse effect concentrations and are thus likely to have large-scale and wide ranging negative biological and ecological impacts on a wide range of non-target invertebrates in terrestrial, aquatic, marine and benthic habitats.
Afficher plus [+] Moins [-]Effects of neonicotinoids and fipronil on non-target invertebrates Texte intégral
2015
Pisa, L.W. | Amaral-Rogers, V. | Belzunces, Luc | Bonmatin, J-M. | Downs, C.A. | Goulson, D. | Kreutzweiser, D.P. | Krupke, C. | Liess, M. | Mcfield, M. | Morrissey, C.A. | Noome, D.A. | Settele, J. | Simon-Delso, N. | Stark, J. D. | van Der Sluijs, Jeroen P. | van Dyck, H. | Wiemers, M. | Universiteit Utrecht / Utrecht University [Utrecht] | Buglife | Abeilles et environnement (AE) ; Institut National de la Recherche Agronomique (INRA) | Centre de biophysique moléculaire (CBM) ; Université d'Orléans (UO)-Université de Tours (UT)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS) | Haereticus Environmental Laboratory ; Partenaires INRAE | School of Life Sciences ; University of Sussex | Canadian Forest Service ; Natural Resources Canada (NRCan) | Department of Entomology ; Michigan State University [East Lansing] ; Michigan State University System-Michigan State University System | Helmholtz Zentrum für Umweltforschung = Helmholtz Centre for Environmental Research (UFZ) | Smithsonian Institution | University of Saskatchewan [Saskatoon, Canada] (U of S) | Kijani, Kasungu national park ; Partenaires INRAE | Department of Community Ecology ; Helmholtz Zentrum für Umweltforschung = Helmholtz Centre for Environmental Research (UFZ) | German Centre for Integrative Biodiversity Research (iDiv) | Centre Apicole de Recherche et Information ; Partenaires INRAE | Washington State University (WSU) | Centre for the Study of the Sciences and the Humanities (SVT) ; University of Bergen (UiB) | Université Catholique de Louvain = Catholic University of Louvain (UCL)
International audience | We assessed the state of knowledge regarding the effects of large-scale pollution with neonicotinoid insecticides and fipronil on non-target invertebrate species of terrestrial, freshwater and marine environments. A large section of the assessment is dedicated to the state of knowledge on sublethal effects on honeybees (<em>Apis mellifera</em>) because this important pollinator is the most studied non-target invertebrate species. Lepidoptera (butterflies and moths), Lumbricidae (earthworms), Apoidae sensu lato (bumblebees, solitary bees) and the section “other invertebrates” review available studies on the other terrestrial species. The sections on freshwater and marine species are rather short as little is known so far about the impact of neonicotinoid insecticides and fipronil on the diverse invertebrate fauna of these widely exposed habitats. For terrestrial and aquatic invertebrate species, the known effects of neonicotinoid pesticides and fipronil are described ranging from organismal toxicology and behavioural effects to population-level effects. For earthworms, freshwater and marine species, the relation of findings to regulatory risk assessment is described. Neonicotinoid insecticides exhibit very high toxicity to a wide range of invertebrates, particularly insects, and field-realistic exposure is likely to result in both lethal and a broad range of important sublethal impacts. There is a major knowledge gap regarding impacts on the grand majority of invertebrates, many of which perform essential roles enabling healthy ecosystem functioning. The data on the few non-target species on which field tests have been performed are limited by major flaws in the outdated test protocols. Despite large knowledge gaps and uncertainties, enough knowledge exists to conclude that existing levels of pollution with neonicotinoids and fipronil resulting from presently authorized uses frequently exceed the lowest observed adverse effect concentrations and are thus likely to have large-scale and wide ranging negative biological and ecological impacts on a wide range of non-target invertebrates in terrestrial, aquatic, marine and benthic habitats.
Afficher plus [+] Moins [-]Effects of neonicotinoids and fipronil on non-target invertebrates | Effets des néonicotinoïdes et du fipronil sur les invertébrés Texte intégral
2015
Pisa, L. W. | Amaral-Rogers, V. | Belzunces, L.P. | Bonmatin, Jean-Marc | Downs, C. A. | Goulson, D. | Kreutzweiser, D. P. | Krupke, C. | Liess, M. | Mcfield, M. | Morrissey, C. A. | Noome, D. A. | Settele, J. | Simon-Delso, N. | Stark, J. D. | van Der Sluijs, J. P. | van Dyck, H. | Wiemers, M. | Laboratoire de Toxicologie Environnementale (LTE) ; Institut National de la Recherche Agronomique (INRA) | Centre de biophysique moléculaire (CBM) ; Université d'Orléans (UO)-Université de Tours (UT)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS) | Helmholtz Zentrum für Umweltforschung = Helmholtz Centre for Environmental Research (UFZ) | Department Community Ecology [UFZ Leipzig] ; Helmholtz Zentrum für Umweltforschung = Helmholtz Centre for Environmental Research (UFZ)
We assessed the state of knowledge regarding the effects of large-scale pollution with neonicotinoid insecticides and fipronil on non-target invertebrate species of terrestrial, freshwater and marine environments. A large section of the assessment is dedicated to the state of knowledge on sublethal effects on honeybees (Apis mellifera) because this important pollinator is the most studied non-target invertebrate species. Lepidoptera (butterflies and moths), Lumbricidae (earthworms), Apoidae sensu lato (bumblebees, solitary bees) and the section “other invertebrates” review available studies on the other terrestrial species. The sections on freshwater and marine species are rather short as little is known so far about the impact of neonicotinoid insecticides and fipronil on the diverse invertebrate fauna of these widely exposed habitats. For terrestrial and aquatic invertebrate species, the known effects of neonicotinoid pesticides and fipronil are described ranging from organismal toxicology and behavioural effects to population-level effects. For earthworms, freshwater and marine species, the relation of findings to regulatory risk assessment is described. Neonicotinoid insecticides exhibit very high toxicity to a wide range of invertebrates, particularly insects, and field-realistic exposure is likely to result in both lethal and a broad range of important sublethal impacts. There is a major knowledge gap regarding impacts on the grand majority of invertebrates, many of which perform essential roles enabling healthy ecosystem functioning. The data on the few non-target species on which field tests have been performed are limited by major flaws in the outdated test protocols. Despite large knowledge gaps and uncertainties, enough knowledge exists to conclude that existing levels of pollution with neonicotinoids and fipronil resulting from presently authorized uses frequently exceed the lowest observed adverse effect concentrations and are thus likely to have large-scale and wide ranging negative biological and ecological impacts on a wide range of non-target invertebrates in terrestrial, aquatic, marine and benthic habitats.
Afficher plus [+] Moins [-]Effects of wind wave turbulence on the phytoplankton community composition in large, shallow Lake Taihu Texte intégral
2015
Zhou, Jian | Qin, Boqiang | Casenave, Céline | Han, Xiaoxia | Yang, Guijun | Wu, Tingfeng | Wu, Pan | Ma, Jianrong
Effects of wind wave turbulence on the phytoplankton community composition in large, shallow Lake Taihu Texte intégral
2015
Zhou, Jian | Qin, Boqiang | Casenave, Céline | Han, Xiaoxia | Yang, Guijun | Wu, Tingfeng | Wu, Pan | Ma, Jianrong
Wind waves are responsible for some of the spatio-temporal gradients observed in the biotic and abiotic variables in large shallow lakes. However, their effects on the phytoplankton community composition are still largely unexplored especially in freshwater systems such as lakes. In this paper, using field observations and mesocosm bioassay experiments, we investigated the impact of turbulence generated by wind waves on the phytoplankton community composition (especially on harmful cyanobacteria) in Lake Taihu, a large, shallow eutrophic lake in China. The composition of the phytoplankton community varied with the intensity of wind waves in the different areas of the lake. During summer, when wind waves were strong in the central lake, diatoms and green algae seemed to dominate while harmful cyanobacteria dominated in the weakly influenced Meiliang Bay. Turbulence bioassays also showed that diatoms and green algae were favoured by turbulent mixing. The critical time for the shift of the phytoplankton community composition was approximately 10 days under turbulent conditions. However, short-term (6 days) turbulence is rather beneficial for the dominance of cyanobacteria. This study suggests that the duration of wind events and their associated hydrodynamics are key factors to understanding the temporal and spatial changes of phytoplankton communities.
Afficher plus [+] Moins [-]Effects of wind wave turbulence on the phytoplankton community composition in large, shallow Lake Taihu Texte intégral
2015
Zhou, Jian | Qin, Boqiang | Casenave, Céline | Han, Xiaoxia | Yang, Guijun | Wu, Tingfeng | Wu, Pan | Ma, Jianrong | University of Chinese Academy of Sciences [Beijing] (UCAS) ; Chinese Academy of Sciences [Beijing] (CAS) | State Key Laboratory of Lake Science and Environment ; Nanjing Institute of Geography and Limnology | Nanjing Institute of Geography and Limnology (Niglas) ; Chinese Academy of Sciences [Beijing] (CAS) | Mathématiques, Informatique et STatistique pour l'Environnement et l'Agronomie (MISTEA) ; Institut National de la Recherche Agronomique (INRA)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro) | College of Resources and Environmental Sciences (CRES) ; Nanjing Agricultural University (NAU) | School of Environmental and Civil Engineering [Wuxi] ; Jiangnan University | Key Laboratory of Reservoir Aquatic Environment ; Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences (CIGIT) | National Science Foundation of China : 41230744, 41471021 ; Water Pollution Control and Management Project : 2012ZX07503-002 | European Project: 267196,EC:FP7:PEOPLE,FP7-PEOPLE-2010-COFUND,AGREENSKILLS(2012)
hal-01150611 | International audience | Wind waves are responsible for some of the spatio-temporal gradients observed in the biotic and abiotic variables in large shallow lakes. However, their effects on the phytoplankton community composition are still largely unexplored especially in freshwater systems such as lakes. In this paper, using field observations and mesocosm bioassay experiments, we investigated the impact of turbulence generated by wind waves on the phytoplankton community composition (especially on harmful cyanobacteria) in Lake Taihu, a large, shallow eutrophic lake in China. The composition of the phytoplankton community varied with the intensity of wind waves in the different areas of the lake. During summer, when wind waves were strong in the central lake, diatoms and green algae seemed to dominate while harmful cyanobacteria dominated in the weakly influenced Meiliang Bay. Turbulence bioassays also showed that diatoms and green algae were favoured by turbulent mixing. The critical time for the shift of the phytoplankton community composition was approximately 10 days under turbulent conditions. However, short-term (6 days) turbulence is rather beneficial for the dominance of cyanobacteria. This study suggests that the duration of wind events and their associated hydrodynamics are key factors to understanding the temporal and spatial changes of phytoplankton communities.
Afficher plus [+] Moins [-]Particulate Matter deposition on leaves across European urban environments: Platanus sp. sampling campaign within COST Action FP1204 Texte intégral
2015
Sgrigna, G. | Maghakyan, N. | Baldacchini, C. | Esposito, R. | Zivojnovic, I. | Breuste, J. | Velikova, V. | Horvat, P. | Christensen, L. | Le Thiec, Didier | Galina, C. | Grote, R. | Ninegal, T. | Rantzoudi, E. | Carriero, G. | Klamerus Iwan, A. | Gawronski, S. | Amorim, J. H. | Cantar Ilie, C. | Dinca, L. | Djunisijevic, D. | Anicic, M. | Sinjur, I. | Alonso Del Amo, R. | Cariñanos Gonzalez, P. | Bellan, P. | Kern, M. | Moretti, M. | Slingerland, L. | Calfapietra, Carlo | Samson, R.
Particulate Matter deposition on leaves across European urban environments: Platanus sp. sampling campaign within COST Action FP1204 Texte intégral
2015
Sgrigna, G. | Maghakyan, N. | Baldacchini, C. | Esposito, R. | Zivojnovic, I. | Breuste, J. | Velikova, V. | Horvat, P. | Christensen, L. | Le Thiec, Didier | Galina, C. | Grote, R. | Ninegal, T. | Rantzoudi, E. | Carriero, G. | Klamerus Iwan, A. | Gawronski, S. | Amorim, J. H. | Cantar Ilie, C. | Dinca, L. | Djunisijevic, D. | Anicic, M. | Sinjur, I. | Alonso Del Amo, R. | Cariñanos Gonzalez, P. | Bellan, P. | Kern, M. | Moretti, M. | Slingerland, L. | Calfapietra, Carlo | Samson, R.
Particulate Matter deposition on leaves across European urban environments: Platanus sp. sampling campaign within COST Action FP1204 Texte intégral
2015
Sgrigna, G. | Maghakyan, N. | Baldacchini, C. | Esposito, R. | Zivojnovic, I. | Breuste, J. | Velikova, V. | Horvat, P. | Christensen, L. | Le Thiec, Didier | Galina, C. | Grote, R. | Ninegal, T. | Rantzoudi, E. | Carriero, G. | Klamerus Iwan, A. | Gawronski, S. | Amorim, J. H. | Cantar Ilie, C. | Dinca, L. | Djunisijevic, D. | Anicic, M. | Sinjur, I. | Alonso Del Amo, R. | Cariñanos Gonzalez, P. | Bellan, P. | Kern, M. | Moretti, M. | Slingerland, L. | Calfapietra, Carlo | Samson, R.
Distinct responses to ozone of stomata in three poplar genotypes Texte intégral
2015
Le Thiec, Didier | Dumont, Jennifer | Spicher, Fabien | Jolivet, Yves | Gérard, Joëlle | Cohen, David
Distinct responses to ozone of stomata in three poplar genotypes Texte intégral
2015
Le Thiec, Didier | Dumont, Jennifer | Spicher, Fabien | Jolivet, Yves | Gérard, Joëlle | Cohen, David
Tropospheric ozone acts as a phytotoxin which produces an oxidative stress in plants. Two ways of defense are used, either by preventing ozone input through the regulation of stomatal conductance, or by detoxifying ozone and ROS in cells. It is known that stomatal movements are alt ered by ozone. We performed fumigation experiment on three euramerican poplar genotypes ( Po pulus deltoides x Populus Nigra : ‘Carpaccio’, ‘Cima’ and ‘Robusta’ ), cultivated in pots in phytotronic chambers submitted to 120 ppb ozone or filtered air. We explor ed the effects of ozone on stomatal responses to four environmental parameters (blue light, red light, CO 2 and VPD). We also find out using a porometer that the decrease of stomatal conductance due to ozone is earlier on the adaxial face than on abaxial fa ce. Finally, to better understand these impacts, we studied ultrastructure of guard cells by TEM, stomatal density and size of stomata by SEM, and we performed X - ray microanalysis of guard cells mineral content. These approaches are coupled with the study on microdissected stomata of expression of genes involved in regulation of stomatal movements
Afficher plus [+] Moins [-]Distinct responses to ozone of stomata in three poplar genotypes Texte intégral
2015
Le Thiec, Didier | Dumont, Jennifer | Spicher, Fabien | Jolivet, Yves | Gérard, Joëlle | Cohen, David
Tropospheric ozone acts as a phytotoxin which produces an oxidative stress in plants. Two ways of defense are used, either by preventing ozone input through the regulation of stomatal conductance, or by detoxifying ozone and ROS in cells. It is known that stomatal movements are alt ered by ozone. We performed fumigation experiment on three euramerican poplar genotypes ( Po pulus deltoides x Populus Nigra : ‘Carpaccio’, ‘Cima’ and ‘Robusta’ ), cultivated in pots in phytotronic chambers submitted to 120 ppb ozone or filtered air. We explor ed the effects of ozone on stomatal responses to four environmental parameters (blue light, red light, CO 2 and VPD). We also find out using a porometer that the decrease of stomatal conductance due to ozone is earlier on the adaxial face than on abaxial fa ce. Finally, to better understand these impacts, we studied ultrastructure of guard cells by TEM, stomatal density and size of stomata by SEM, and we performed X - ray microanalysis of guard cells mineral content. These approaches are coupled with the study on microdissected stomata of expression of genes involved in regulation of stomatal movements
Afficher plus [+] Moins [-]Non-parametric modelling of pollution-generating technologies: Theoretical and methodological considerations, with an application to the case of greenhouse gas emissions in suckler breeding systems in French grassland areas Texte intégral
2015
Dakpo, Herve
Non-parametric modelling of pollution-generating technologies: Theoretical and methodological considerations, with an application to the case of greenhouse gas emissions in suckler breeding systems in French grassland areas Texte intégral
2015
Dakpo, Herve
The growing importance of environmental matters in social responsibility of firms has generated manyframeworks of analysis in the economic literature. Among those frameworks, performance evaluationand benchmarking using the non-parametric Data Envelopment Analysis (DEA) have increased at avery fast rate. This PhD research focuses on models that include undesirable outputs such as pollutionin the overall production system, to appraise eco-efficiency of decision making units (DMUs). Besides,the recent awareness on the large contribution of agriculture and particularly livestock farming toglobal warming, has highlighted for this sector the challenge of reaching both economic andenvironmental performances. In this line, the overall objective of this dissertation is to provide atheoretical and empirical background in modelling pollution-generating technologies and to suggesttheoretical improvements that are consistent with the particular case of greenhouse gas emissions inextensive livestock systems. Firstly, we showed that all existing approaches that deal with undesirableoutputs in the non-parametric analysis (i.e. DEA) have some strong drawbacks. However, the modelsgrounded on the estimation of multiple independent sub-technologies offer interesting opportunities.Secondly, I developed a new framework that extends the by-production approach through theintroduction of some explicit dependence constraints that link the sub-technologies in order to build aunified system. Thirdly, an empirical comparison, using a sample of French sheep meat farms, of thisby-production modelling extension with the existing approaches, revealed some inconsistencies ofthese latter. Finally, we expanded this new by-production formulation to account for dynamic aspectsrelated to the presence of adjustment costs. The application to the case of French suckler cow farmsunderlined the necessity of accounting for dynamic aspects and also showed high heterogeneity ininvestment strategies of these farmers. | La prise en compte des problèmes environnementaux dans la responsabilité sociale des entreprises a généré en économie de nombreuses propositions. Parmi elles, le cadre d’analyse basé sur l’évaluation de la performance en utilisant notamment les techniques d’enveloppement des données (DEA) s’est très vite répandu dans la littérature théorique comme empirique. Ce travail de thèse s’inscrit dans cette logique en mettant l’accent sur la modélisation des technologies polluantes. Par ailleurs, la question des changements climatiques et de la forte contribution de l’agriculture et en particulier de l’élevage dans les émissions de gaz à effet de serre (GES) impose à ce secteur de relever aujourd’hui en plus du défi économique celui de l’amélioration de sa performance environnementale. L’objectif général de cette recherche doctorale est donc de fournir un nouveau cadre d’analyse théorique et empirique dans la modélisation des technologies polluantes afin d’évaluer l’éco-efficience des systèmes productifs, en particulier le cas des émissions de GES en élevage extensif de ruminants. Dans un premier temps, nous montrons les limites théoriques et méthodologiques des modèles existants. Néanmoins, nous insistons sur le fait que les approches basées sur l’estimation de plusieurs sous-technologies indépendantes pour prendre en compte les différents processus présents dans les systèmes productifs sont très prometteuses. Dès lors dans un deuxième temps, nous proposons une nouvelle extension de la méthode « by-production » qui repose sur l’introduction d’interconnections entre les différentes sous-technologies impliquées afin de construire un système plus unifié. Dans un troisième temps, une comparaison empirique utilisant des données d’exploitations de viande ovine de notre extension avec les approches existantes a révélé certaines incohérences de ces dernières. Enfin pour aller plus loin, nous élargissons dans un quatrième temps notre approche afin de prendre en compte les aspects dynamiques et notamment la présence de coûts d’ajustement. Les résultats de l’analyse empirique entreprise avec des données d’exploitations bovines allaitantes (viande) ont révélé la nécessité de prendre en compte ces aspects,mais ont aussi révélé la forte hétérogénéité existante dans les stratégies d’investissements deséleveurs.
Afficher plus [+] Moins [-]Non-parametric modelling of pollution-generating technologies: Theoretical and methodological considerations, with an application to the case of greenhouse gas emissions in suckler breeding systems in French grassland areas Texte intégral
2015
Dakpo, Herve
The growing importance of environmental matters in social responsibility of firms has generated manyframeworks of analysis in the economic literature. Among those frameworks, performance evaluationand benchmarking using the non-parametric Data Envelopment Analysis (DEA) have increased at avery fast rate. This PhD research focuses on models that include undesirable outputs such as pollutionin the overall production system, to appraise eco-efficiency of decision making units (DMUs). Besides,the recent awareness on the large contribution of agriculture and particularly livestock farming toglobal warming, has highlighted for this sector the challenge of reaching both economic andenvironmental performances. In this line, the overall objective of this dissertation is to provide atheoretical and empirical background in modelling pollution-generating technologies and to suggesttheoretical improvements that are consistent with the particular case of greenhouse gas emissions inextensive livestock systems. Firstly, we showed that all existing approaches that deal with undesirableoutputs in the non-parametric analysis (i.e. DEA) have some strong drawbacks. However, the modelsgrounded on the estimation of multiple independent sub-technologies offer interesting opportunities.Secondly, I developed a new framework that extends the by-production approach through theintroduction of some explicit dependence constraints that link the sub-technologies in order to build aunified system. Thirdly, an empirical comparison, using a sample of French sheep meat farms, of thisby-production modelling extension with the existing approaches, revealed some inconsistencies ofthese latter. Finally, we expanded this new by-production formulation to account for dynamic aspectsrelated to the presence of adjustment costs. The application to the case of French suckler cow farmsunderlined the necessity of accounting for dynamic aspects and also showed high heterogeneity ininvestment strategies of these farmers. | La prise en compte des problèmes environnementaux dans la responsabilité sociale des entreprises a généré en économie de nombreuses propositions. Parmi elles, le cadre d’analyse basé sur l’évaluation de la performance en utilisant notamment les techniques d’enveloppement des données (DEA) s’est très vite répandu dans la littérature théorique comme empirique. Ce travail de thèse s’inscrit dans cette logique en mettant l’accent sur la modélisation des technologies polluantes. Par ailleurs, la question des changements climatiques et de la forte contribution de l’agriculture et en particulier de l’élevage dans les émissions de gaz à effet de serre (GES) impose à ce secteur de relever aujourd’hui en plus du défi économique celui de l’amélioration de sa performance environnementale. L’objectif général de cette recherche doctorale est donc de fournir un nouveau cadre d’analyse théorique et empirique dans la modélisation des technologies polluantes afin d’évaluer l’éco-efficience des systèmes productifs, en particulier le cas des émissions de GES en élevage extensif de ruminants. Dans un premier temps, nous montrons les limites théoriques et méthodologiques des modèles existants. Néanmoins, nous insistons sur le fait que les approches basées sur l’estimation de plusieurs sous-technologies indépendantes pour prendre en compte les différents processus présents dans les systèmes productifs sont très prometteuses. Dès lors dans un deuxième temps, nous proposons une nouvelle extension de la méthode « by-production » qui repose sur l’introduction d’interconnections entre les différentes sous-technologies impliquées afin de construire un système plus unifié. Dans un troisième temps, une comparaison empirique utilisant des données d’exploitations de viande ovine de notre extension avec les approches existantes a révélé certaines incohérences de ces dernières. Enfin pour aller plus loin, nous élargissons dans un quatrième temps notre approche afin de prendre en compte les aspects dynamiques et notamment la présence de coûts d’ajustement. Les résultats de l’analyse empirique entreprise avec des données d’exploitations bovines allaitantes (viande) ont révélé la nécessité de prendre en compte ces aspects,mais ont aussi révélé la forte hétérogénéité existante dans les stratégies d’investissements deséleveurs.
Afficher plus [+] Moins [-]