Affiner votre recherche
Résultats 1-10 de 69
Assessment of lead tolerance on Glycine max (L.) Merr. at early growth stages Texte intégral
2021
Blanco, Andrés | Pignata, María L. | Lascano, Hernan Ramiro | Rodriguez, Judith Hebelen
Lead (Pb) contamination of agricultural soils, and subsequently of crops, has been widely reported. Soybean (Glycine max (L.) Merr.) has been indicated as a plant that accumulates Pb, even in soils that do not exceed the maximum permissible levels. Considering the toxicity of this heavy metal, the aim of the present study was to assess different concentrations of Pb, from low to extremely high (0.25 mM, 1 mM, and 2.5 mM), in soybean seedlings and their tolerance by analyzing morpho-physiological parameters in hydroponic experiments. Soybean seedlings were exposed to control and Pb treatments during 8 days, coinciding with the early growth stages, and the following variables were analyzed: biomass, Pb content in roots, stems and leaves, photosynthetic efficiency, leaf area, biochemical response (antioxidant power, chlorophylls, malondialdehyde), and relative water content of leaves. Results showed that roots accumulated much more Pb than the other organs, with Pb accumulation in roots being saturated even at the lowest Pb concentration, which was reflected in root biomass. Moreover, absorption of culture solutions was lower in Pb treatments, which was also reflected in the lower leaf relative water content. Lead toxicity symptoms in leaves (chlorosis and dark spots, and a decrease of biomass and leaf area, chlorophyll content, and photosynthetic efficiency), and an increase of the oxidative defense system were associated only with the highest Pb concentration (2.5 mM). Our findings support the evidence of soybean as a species tolerant to Pb, showing the effects of toxicity at very high concentrations. | Instituto de Fisiología y Recursos Genéticos Vegetales | Fil: Blanco, Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto Multidisciplinario de Biología Vegetal (IMBIV). Área Contaminación y Bioindicadores; Argentina | Fil: Blanco, Andrés. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina | Fil: Pignata, María L. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto Multidisciplinario de Biología Vegetal (IMBIV). Área Contaminación y Bioindicadores; Argentina | Fil: Pignata, María L. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina | Fil: Lascano, Hernán Ramiro. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Cátedra de Fisiología Vegetal; Argentina | Fil: Lascano, Hernán Ramiro. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Unidad de Estudios Agropecuarios (UDEA); Argentina | Fil: Lascano, Hernán Ramiro. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Fisiología y Recursos Genéticos Vegetales. Argentina | Fil: Rodriguez, Judith H. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto Multidisciplinario de Biología Vegetal (IMBIV). Área Contaminación y Bioindicadores. Argentina | Fil: Rodriguez, Judith H. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina
Afficher plus [+] Moins [-]Hydrogen sulfide manages hexavalent chromium toxicity in wheat and rice seedlings: The role of sulfur assimilation and ascorbate-glutathione cycle Texte intégral
2022
Singh, Sani kumar | Suhel, Mohammad | Tajammul Ḥusain, | Prasad, Sheo Mohan | Singh, Vijay Pratap
The role of hydrogen sulfide (H₂S) is well known in the regulation of abiotic stress such as toxic heavy metal. However, mechanism(s) lying behind this amelioration are still poorly known. Consequently, the present study was focused on the regulation/mitigation of hexavalent chromium (Cr(VI) toxicity by the application of H₂S in wheat and rice seedlings. Cr(VI) induced accumulation of reactive oxygen species and caused protein oxidation which negatively affect the plant growth in both the cereal crops. We noticed that Cr(VI) toxicity reduced length of wheat and rice seedlings by 21% and 19%, respectively. These reductions in length of both the cereal crops were positively related with the down-regulation in the ascorbate-glutathione cycle, and were recovered by the application NaHS (a donor of H₂S). Though exposure of Cr(VI) slightly stimulated sulfur assimilation but addition of H₂S further caused enhancement in sulfur assimilation, suggesting its role in the H₂S-mediated Cr(VI) stress tolerance in studied cereal crops. Overall, the results revealed that H₂S renders Cr(VI) stress tolerance in wheat and rice seedlings by stimulating sulfur assimilation and ascorbate-glutathione which collectively reduce protein oxidation and thus, improved growth was observed.
Afficher plus [+] Moins [-]Effect of gibberellic acid on growth, photosynthesis and antioxidant defense system of wheat under zinc oxide nanoparticle stress Texte intégral
2019
Iftikhar, Azka | Ali, Shafaqat | Yasmeen, Tahira | Arif, Muhammad Saleem | Zubair, Muhammad | Rizwan, Muhammad | Alhaithloul, Haifa Abdulaziz S. | Alayafi, Aisha A.M. | Soliman, Mona H.
The production and soil accumulation of nanoparticles (NPs) from the industrial sector has increased concerns about their toxic effects in plants which needs the research to explore the ways of reducing NPs toxicity in pants. The gibberellic acid (GA) has been found to reduce abiotic stresses in plants. However, the effect of GA in reducing zinc oxide (ZnO) NPs-mediated toxicity in plants remains unclear. In this study, foliar application of GA was used to explore the possible role in reducing ZnO NPs toxicity in wheat (Triticum aestivum L.) plants. The plants were grown in pots spiked with ZnO NPs (0, 300, 600, 900, 1200 mg/kg) and GA (0, 100, 200 mg/L) was foliar sprayed at different times during the growth period under ambient environmental conditions. Our results demonstrated that GA inhibited the toxicity of ZnO NPs in wheat especially at higher levels of NPs. The GA application improved the plant biomass, photosynthesis, nutrients, and yield under ZnO NPs stress. The GA reduced the Zn accumulation, and reactive oxygen species generation in plants caused by toxicity of NPs. The protective effect of GA in decreasing ZnO NPs-induced oxidative stress was related to GA-mediated enhancement in antioxidant enzymes in plants. The role of GA in enhancing tolerance of wheat against ZnO NPs was further confirmed by the enhancement in nutrient contents in shoots and roots of wheat. Overall, our study provides the evidence that GA can reduce ZnO NPs-induced toxicity in wheat and probably in other crops which needs further in-depth investigation.
Afficher plus [+] Moins [-]The effects of organophosphorus insecticides and heavy metals on DNA damage and programmed cell death in two plant models Texte intégral
2018
Cortés-Eslava, Josefina | Gómez-Arroyo, Sandra | Risueño, Maria C. | Testillano, Pilar S.
The ubiquity of pollutants, such as agrochemicals and heavy metals, constitute a serious risk to human health. To evaluate the induction of DNA damage and programmed cell death (PCD), root cells of Allium cepa and Vicia faba were treated with two organophosphate insecticides (OI), fenthion and malathion, and with two heavy metal (HM) salts, nickel nitrate and potassium dichromate. An alkaline variant of the comet assay was performed to identify DNA breaks; the results showed comets in a dose-dependent manner, while higher concentrations induced clouds following exposure to OIs and HMs. Similarly, treatments with higher concentrations of OIs and HMs were analyzed by immunocytochemistry, and several structural characteristics of PCD were observed, including chromatin condensation, cytoplasmic vacuolization, nuclear shrinkage, condensation of the protoplast away from the cell wall, and nuclei fragmentation with apoptotic-like corpse formation. Abiotic stress also caused other features associated with PCD, such as an increase of active caspase-3-like protein, changes in the location of cytochrome C (Cyt C) toward the cytoplasm, and decreases in extracellular signal-regulated protein kinase (ERK) expression. Genotoxicity results setting out an oxidative via of DNA damage and evidence the role of the high affinity of HM and OI by DNA molecule as underlying cause of genotoxic effect. The PCD features observed in root cells of A. cepa and V. faba suggest that PCD takes place through a process that involves ERK inactivation, culminating in Cyt C release and caspase-3-like activation. The sensitivity of both plant models to abiotic stress was clearly demonstrated, validating their role as good biosensors of DNA breakage and PCD induced by environmental stressors.
Afficher plus [+] Moins [-]Canopy-level stomatal narrowing in adult Fagus sylvatica under O3 stress – Means of preventing enhanced O3 uptake under high O3 exposure? Texte intégral
2015
Matyssek, R. | Baumgarten, M. | Hummel, U. | Häberle, K.-H. | Kitao, M. | Wieser, G.
Spatio-temporally consistent O3 doses are demonstrated in adult Fagus sylvatica from the Kranzberg Forest free-air fumigation experiment, covering cross-canopy and whole-seasonal scopes through sap flow measurement. Given O3-driven closure of stomata, we hypothesized enhanced whole-tree level O3 influx to be prevented under enhanced O3 exposure. Although foliage transpiration rate was lowered under twice-ambient O3 around noon by 30% along with canopy conductance, the hypothesis was falsified, as O3 influx was raised by 25%. Nevertheless, the twice-ambient/ambient ratio of O3 uptake was smaller by about 20% than that of O3 exposure, suggesting stomatal limitation of uptake. The O3 response was traceable from leaves across branches to the canopy, where peak transpiration rates resembled those of shade rather than sun branches. Rainy/overcast-day and nightly O3 uptake is quantified and discussed. Whole-seasonal canopy-level validation of modelled with sap flow-derived O3 flux becomes available in assessing O3 risk for forest trees.
Afficher plus [+] Moins [-]Population responses of Daphnia magna, Chydorus sphaericus and Asellus aquaticus in pesticide contaminated ditches around bulb fields Texte intégral
2014
Ieromina, O. | Peijnenburg, W.J.G.M. | de Snoo, G.R. | Vijver, M.G.
The goal of this study was to investigate the effects of ambient concentrations of pesticides combined with abiotic factors on the key aquatic species Daphnia magna, Chydorus sphaericus and Asellus aquaticus by means of 21 days field exposure experiments. In situ bioassays were deployed in ditches around flower bulb fields during spring and autumn 2011–2012. The results showed that phosphate was the most variable parameter followed by pesticides expressed as toxic units, as the main factors explaining differences between sites. Variation in reproduction and growth of cladoceran D. magna was largely explained by nutrients, whereas dissolved oxygen contributed mostly to variations in reproduction of C. sphaericus. Dissolved organic carbon contributed to variations in growth of the detrivore A. aquaticus. It is concluded that abiotic stressors rather than pesticides contributed significantly to the performance of aquatic invertebrates.
Afficher plus [+] Moins [-]Plant growth-promoting actinobacterial inoculant assisted phytoremediation increases cadmium uptake in Sorghum bicolor under drought and heat stresses Texte intégral
2022
Silambarasan, Sivagnanam | Logeswari, Peter | Vangnai, Alisa S. | Kamaraj, Balu | Cornejo, Pablo
In this study, two proficient Cadmium (Cd) resistant and plant growth-promoting actinobacterial strains were isolated from metal-polluted soils and identified as Streptomyces sp. strain RA04 and Nocardiopsis sp. strain RA07. Multiple abiotic stress tolerances were found in these two actinobacterial strains, including Cd stress (CdS), drought stress (DS) and high-temperature stress (HTS). Both actinobacterial strains exhibited multifarious plant growth-promoting (PGP) traits such as phosphate solubilization, and production of indole-3-acetic acid, siderophores and 1-aminocyclopropane-1-carboxylate deaminase under CdS, DS and HTS conditions. The inoculation of strains RA04 and RA07 significantly increased Sorghum bicolor growth and photosynthetic pigments under CdS, DS, HTS, CdS + DS and CdS + HTS conditions as compared to their respective uninoculated plants. The actinobacterial inoculants reduced malondialdehyde concentration and enhanced antioxidant enzymes in plants cultivated under various abiotic stress conditions, indicating that actinobacterial inoculants reduced oxidative damage. Furthermore, strains RA04 and RA07 enhanced the accumulation of Cd in plant tissues and the translocation of Cd from root to shoot under CdS, CdS + DS and CdS + HTS treatments as compared to their respective uninoculated plants. These findings suggest that RA04 and RA07 strains could be effective bio-inoculants to accelerate phytoremediation of Cd polluted soil even in DS and HTS conditions.
Afficher plus [+] Moins [-]Enhancement of polyphenolic metabolism as an adaptive response of lettuce (Lactuca sativa) roots to aluminum stress Texte intégral
2020
Chen, Yao | Huang, Lin | Liang, Xin | Dai, Peibin | Zhang, Yuxue | Li, Baohai | Lin, Xianyong | Sun, Chengliang
Polyphenols, pivotal secondary metabolites, are involved in plant adaption to abiotic stresses. Here, we investigated the role and metabolism profile of polyphenols under aluminum (Al) stress in different lettuce genotypes grown in 0.5 mM CaCl₂ solution with AlCl₃ (pH = 4.5). The complementary use of high-resolution mass spectrometry and quantitative biochemical approaches allowed the characterization of total and unique phenols, as well as their roles in Al tolerance. By comparing the most tolerant and sensitive genotype, 8 polyphenols, including 4 phenolic acids, 2 flavonoids, 1 xanthone and 1 unknown compound, were identified in the roots of the tolerant genotype. The total phenolic and flavonoid contents significantly increased in the tolerant genotype under Al stress. Seedlings with more phenolic accumulation usually performed greater Al tolerance. Meanwhile, principal enzymes related to phenolic biosynthesis significantly increased in roots of the tolerance genotype after Al treatment, with phenylalanine ammonia lyase (PAL), cinnamate 4-hydroxylase, and 4-coumarate coenzyme A ligase increased by 16, 18 and 30%, respectively. The elevated total phenolics were significantly suppressed by AIP, a highly specific PAL inhibitor. Consequently, the antioxidant capacity was inhibited, leading to lettuce sensitivity to Al stress. These results clearly suggested the enhancement of unique polyphenolic biosynthesis as an adaptive strategy of lettuce to Al stress by protecting plants from oxidative stress.
Afficher plus [+] Moins [-]Hydrogen gas alleviates toxic effects of cadmium in Brassica campestris seedlings through up-regulation of the antioxidant capacities: Possible involvement of nitric oxide Texte intégral
2019
Su, Nana | Wu, Qi | Chen, Hui | Huang, Yifan | Zhu, Zhengbo | Chen, Yahua | Cui, Jin
Hydrogen gas (H₂) has been shown as an important factor in plant tolerance to abiotic stresses, but the underlying mechanisms remain unclear. In the present study, the effects of H₂ and its interaction with nitric oxide (NO) on alleviating cadmium (Cd) stress in Brassica campestris seedlings were investigated. NO donor (SNP) or hydrogen-rich water (HRW) treatment showed a significant improvement in growth of Cd-stressed seedlings. Cd treatment upregulated both endogenous NO and H₂ (36% and 66%, respectively), and the increase of H₂ was prior to NO increase. When treated with NO scavenger (PTIO) or NO biosynthesis enzyme inhibitors (L-NAME and Gln), HRW-induced alleviation under Cd stress was prevented. Under Cd stress, HRW pretreatment significantly enhanced the NO accumulation, and together up-regulated the activity of NR (nitrate reductase) and expression of NR. HRW induced lower reactive oxygen species (ROS), higher AsA content, enhanced activity of POD (peroxidase) and SOD (superoxide dismutase) in seedling roots were inhibited by PTIO, L-NAME and Gln. Through proteomic analysis, the level of 29 proteins were changed in response to H₂ and NO-induced amelioration of Cd stress. Nearly half of them were involved in oxidation-reduction processes (about 20%) or antioxidant enzymes (approximately 20%). These results strongly indicate that in Cd-stressed seedlings, pretreatment with HRW induces the accumulation of H₂ (biosynthesized or permeated), which further stimulates the biosynthesis of NO through the NR pathway. Finally, H₂ and NO together enhance the antioxidant capabilities of seedlings in response to Cd toxicity.
Afficher plus [+] Moins [-]Arsenic tolerant Trichoderma sp. reduces arsenic induced stress in chickpea (Cicer arietinum) Texte intégral
2016
Tripāṭhī, Pratibhā | Singh, Poonam C. | Mishra, Aradhana | Srivastava, Suchi | Chauhan, Reshu | Awasthi, Surabhi | Miśrā, Sīmā | Dwivedi, Sanjay | Kupur, Preeti T. | Kalra, Alok | Tripathi, R. D. (Rudra D.) | Nautiyal, Chandra S.
Toxic metalloids including arsenic (As) can neither be eliminated nor destroyed from environment; however, they can be converted from toxic to less/non-toxic forms. The form of As species and their concentration determines its toxicity in plants. Therefore, the microbe mediated biotransformation of As is crucial for its plant uptake and toxicity. In the present study the role of As tolerant Trichoderma in modulating As toxicity in chickpea plants was explored. Chickpea plants grown in arsenate spiked soil under green house conditions were inoculated with two plant growth promoting Trichoderma strains, M-35 (As tolerant) and PPLF-28 (As sensitive). Total As concentration in chickpea tissue was comparable in both the Trichoderma treatments, however, differences in levels of organic and inorganic As (iAs) species were observed. The shift in iAs to organic As species ratio in tolerant Trichoderma treatment correlated with enhanced plant growth and nutrient content. Arsenic stress amelioration in tolerant Trichoderma treatment was also evident through rhizospheric microbial community and anatomical studies of the stem morphology. Down regulation of abiotic stress responsive genes (MIPS, PGIP, CGG) in tolerant Trichoderma + As treatment as compared to As alone and sensitive Trichoderma + As treatment also revealed that tolerant strain enhanced the plant's potential to cope with As stress as compared to sensitive one. Considering the bioremediation and plant growth promotion potential, the tolerant Trichoderma may appear promising for its utilization in As affected fields for enhancing agricultural productivity.
Afficher plus [+] Moins [-]