Affiner votre recherche
Résultats 1-10 de 160
Quantifying and predicting ecological and human health risks for binary heavy metal pollution accidents at the watershed scale using Bayesian Networks Texte intégral
2021
Liu, Jing | Liu, Renzhi | Yang, Zhifeng | Kuikka, Sakari
The accidental leakage of industrial wastewater containing heavy metals from enterprises poses great risks to resident health, social instability, and ecological safety. During 2005–2018, heavy metal mixed pollution accidents comprised approximately 33% of the major environmental ones in China. A Bayesian Networks-based probabilistic approach is developed to quantitatively predict ecological and human health risks for heavy metal mixed pollution accidents at the watershed scale. To estimate the probability distributions of joint ecological exposure once a heavy metal mixed pollution accident occurs, a Copula-based joint exposure calculation method, comprised of a hydro-dynamic model, emergent heavy metal pollution transport model, and the Copula functions, is embedded. This approach was applied to the risk assessment of acute Cr⁶⁺-Hg²⁺ mixed pollution accidents at 76 electroplating enterprises in 24 risk sub-watersheds of the Dongjiang River downstream watershed. The results indicated that nine sub-watersheds created high ecological risks, while only five created high human health risks. In addition, the ecological and human health risk levels were highest in the tributary (the Xizhijiang River), while the ecological risk was more critical in the river network, and the human health risk was more serious in the mainstream of the Dongjiang River. The quantitative risk assessment provides a substantial support to incident prevention and control, risk management, as well as regulatory decision making for electroplating enterprises.
Afficher plus [+] Moins [-]Assessment of biopiles treatment on polluted soils by the use of Eisenia andrei bioassay Texte intégral
2021
Olivia, Lorente-Casalini | Minerva, García-Carmona | Rocío, Pastor-Jáuregui | Francisco José, Martín-Peinado
A long-term case of residual pollution is studied after 20 years since the largest mining accident in Spain (the Aznalcóllar spill) happened. This pollution is manifested through a surface zoning consisting of bare soils (B0), sparsely vegetated soils (B1), and densely vegetated and recovered soils (B2). A biopiles treatment with a mixture of contaminated soils (B0 and B1) with recovered soils (B2) at 50% (w/w), and vermicompost addition (50 tons ha-1) was evaluated. To assess the effectiveness of treatments, total, water-soluble, and bioavailable fractions of the most polluting elements in the zone (Cu, Zn, As, Pb, Cd, and Sb) was analyzed. To evaluate the potential risk of contamination for the ecosystem, a bioassay with earthworm Eisenia andrei was carried out. Twenty years after the accident, there are still soils where total As and Pb exceed the regulatory levels and water-soluble Zn and As exceed the toxicity guidelines. According to toxicity bioassay, weight variation and juvenile production of earthworms showed an improvement after biopiles treatment, with values that trend to be similar to those of recovered soils. The only bioaccumulated element in earthworms was Cd (BAF>1), both in polluted as in treated soils, which indicates the possible existence of exclusion mechanisms of the other pollutants by earthworms. The comparison between biopiles and polluted soils showed no significant differences for the bioaccumulation factor of trace elements, with the exception of Zn and Cu, which slightly increased after treatment. According to our results, biopiles treatment combined with vermicompost addition is a good technique for the recovery of residual contaminated areas, by the improvement of soil properties and the reduction of the potential toxicity; anyway, monitoring of soils and organisms is needed to prevent the increase of bioavailability of some potentially pollutant elements over time.
Afficher plus [+] Moins [-]Use of natural and artificial radionuclides to determine the sedimentation rates in two North Caucasus lakes Texte intégral
2020
Kuzmenkova, Natalia V. | Ivanov, Maxim M. | Alexandrin, Mikhail Y. | Grachev, Alexei M. | Rozhkova, Alexandra K. | Zhizhin, Kirill D. | Grabenko, Evgeniy A. | Golosov, Valentin N.
The specific activities of natural (²¹⁰Pb, ²²⁶Ra, and ²³²Th) and artificial (¹³⁷Cs, ²³⁹,²⁴⁰Pu, and ²⁴¹Am) radionuclides in the sediments of two North Caucasus lakes were determined. The two lakes, Lake Khuko and Lake Donguz-Orun, differ in their sedimentation conditions. Based on the use of unsupported ²¹⁰Pbₑₓ and both Chernobyl-derived and bomb-derived ¹³⁷Cs as chronological markers, it was established that the sedimentation rates in Lake Khuko over the past 55–60 y did not exceed 0.017 cm y⁻¹. Sedimentation rates in Lake Donguz-Orun were found to be more than an order of magnitude higher. In the latter case, the sedimentation rates for the period from 1986 to the present were over 1.5 times higher than they were for the period 1963–1986. The differences in sedimentation rates were due to differences in the rates of denudation of their respective catchment areas. The specific activities of artificial radionuclides (¹³⁷Cs, 2600 Bq kg⁻¹; ²³⁹,²⁴⁰Pu, 162 Bq kg⁻¹; and ²⁴¹Am, 36 Bq kg⁻¹) and their ratios in the sediments of Lake Khuko show that their deposition was mainly due to global stratospheric fallout of technogenic radionuclides associated with nuclear bomb testing during 1954–1963—rather than fallout from the Chernobyl accident. Several factors, including the mode of precipitation, features of the surface runoff, and location of Lake Khuko, were responsible for the accumulation of artificial radionuclides.
Afficher plus [+] Moins [-]Adsorption and regeneration of expanded graphite modified by CTAB-KBr/H3PO4 for marine oil pollution Texte intégral
2018
Xu, Congbin | Jiao, Chunlei | Yao, Ruihua | Lin, Aijun | Jiao, Wentao
The cleaning-up of viscous oil spilled in ocean is a global challenge, especially in Bohai, due to its slow current movement and poor self-purification capacity. Frequent oil-spill accidents not only cause severe and long-term damages to marine ecosystems, but also lead to a great loss of valuable resources. To eliminate the environmental pollution of oil spills, an efficient and environment-friendly oil-recovery approach is necessary. In this study,¹expanded graphite (EG) modified by CTAB-KBr/H₃PO₄ was synthesized via composite intercalation agents of CTAB-KBr and natural flake graphite, followed by the activation of phosphoric acid at low temperature. The resultant modified expanded graphite (M-EG) obtained an interconnected and continuous open microstructure with lower polarity surface, more and larger pores, and increased surface hydrophobicity. Due to these characteristics, M-EG exhibited a superior adsorption capacity towards marine oil. The saturated adsorption capacities of M-EG were as large as 7.44 g/g for engine oil, 6.12 g/g for crude oil, 5.34 g/g for diesel oil and 4.10 g/g for gasoline oil in 120min, exceeding the capacity of pristine EG. Furthermore, M-EG maintained good removal efficiency under different adsorption conditions, such as temperature, oil types, and sodium salt concentration. In addition, oils sorbed into M-EG could be recovered either by a simple compression or filtration-drying treatment with a recovery ratio of 58–83%. However, filtration-drying treatment shows better performance in preserving microstructures of M-EG, which ensures the adsorbents can be recycled several times. High removal capability, fast adsorption efficiency, excellent stability and good recycling performance make M-EG an ideal candidate for treating marine oil pollution in practical application.
Afficher plus [+] Moins [-]Microbial community composition and PAHs removal potential of indigenous bacteria in oil contaminated sediment of Taean coast, Korea Texte intégral
2018
Lee, Dong Wan | Lee, Hanbyul | Lee, Aslan Hwanhwi | Kwon, Bong-Oh | Khim, Jong Seong | Yim, Un Hyuk | Kim, Beom Seok | Kim, Jae Jin
The tidal flats near Sinduri beach in Taean, Korea, have been severely contaminated by heavy crude oils due to the Korea's worst oil spill accident, say the Hebei Spirit Oil Spill, in 2007. Crude oil compounds, including polycyclic aromatic hydrocarbons (PAHs), pose significant environmental damages due to their wide distribution, persistence, high toxicity, mutagenicity, and carcinogenicity. Microbial community of Sinduri beach sediments samples was analyzed by metagenomic data with 16S rRNA gene amplicons. Three phyla (Proteobacteria, Firmicutes, and Bacteroidetes) accounted for approximately ≥93.0% of the total phyla based on metagenomic analysis. Proteobacteria was the dominant phylum in Sinduri beach sediments. Cultivable bacteria were isolated from PAH-enriched cultures, and bacterial diversity was investigated through performing culture characterization followed by molecular biology methods. Sixty-seven isolates were obtained, comprising representatives of Actinobacteria, Firmicutes, α- and γ-Proteobacteria, and Bacteroidetes. PAH catabolism genes, such as naphthalene dioxygenase (NDO) and aromatic ring hydroxylating dioxygenase (ARHDO), were used as genetic markers to assess biodegradation of PAHs in the cultivable bacteria. The ability to degrade PAHs was demonstrated by monitoring the removal of PAHs using a gas chromatography mass spectrometer. Overall, various PAH-degrading bacteria were widely present in Sinduri beach sediments and generally reflected the restored microbial community. Among them, Cobetia marina, Rhodococcus soli, and Pseudoalteromonas agarivorans were found to be significant in degradation of PAHs. This large collection of PAH-degrading strains represents a valuable resource for studies investigating mechanisms of PAH degradation and bioremediation in oil contaminated coastal environment, elsewhere.
Afficher plus [+] Moins [-]Radiocaesium accumulation and fluctuating asymmetry in the Japanese mitten crab, Eriocheir japonica, along a gradient of radionuclide contamination at Fukushima Texte intégral
2022
Fuller, Neil | Smith, Jim T. | Takase, Tsugiko | Ford, Alex T. | Wada, Toshihiro
The 2011 Tohoku earthquake-tsunami and the subsequent nuclear accident at the Fukushima Dai-ichi Nuclear Power Station (FDNPS) led to large-scale radionuclide contamination of the marine and freshwater environment. Monitoring studies of marine food products in the Fukushima region have generally demonstrated a declining trend in radiocaesium concentrations. However, the accumulation and elimination of radiocaesium and potential biological effects remain poorly understood for freshwater biota inhabiting highly contaminated areas at Fukushima. Consequently, the present study aimed to assess radiocaesium accumulation and developmental effects on the commercially important catadromous Japanese mitten crab, Eriocheir japonica. E. japonica were collected from four sites along a gradient of radionuclide contamination 4–44 km in distance from the FDNPS in 2017. To determine potential developmental effects, fluctuating asymmetry (FA) was used as a measure of developmental stability. Combined ¹³⁴Cs and ¹³⁷Cs values for whole E. japonica from highly contaminated sites 4 and 16 km in distance from the FDNPS were 3040 ± 521 and 2250 ± 908 Bq kg⁻¹ wet weight respectively, 30 and 22 times greater than the Japanese standard limit of 100 Bq kg⁻¹. Estimated total dose rates based on radiocaesium concentrations in whole crabs and sediment ranged from 0.016 to 37.7 μGy h⁻¹. No significant relationship between radiocaesium accumulation and FA was recorded, suggesting that chronic radiation exposure at Fukushima is not inducing developmental effects in E. japonica as measured using fluctuating asymmetry. Furthermore, estimated dose rates were below proposed regulatory limits where significant deleterious effects are expected. The present study will aid in the understanding of the long-term consequences of radiation exposure for non-human biota and the management of radioactively contaminated environments.
Afficher plus [+] Moins [-]Interception of radionuclides by planophile crops: A simple semi-empirical modelling approach in case of nuclear accident fallout Texte intégral
2020
Cristina, A. | Samson, R. | Horemans, N. | Van Hees, M. | Wannijn, J. | Bruggeman, M. | Sweeck, L.
Shortly after an atmospheric release, the interception of radionuclides by crop canopies represents the main uptake pathway leading to food chain contamination. The food chain models currently used in European emergency decision support systems require a large number of input parameters, which inevitably leads to high model complexity. In this study, we have established a new relationship for wet deposited radionuclides to simplify the current modelling approaches. This relationship is based on the hypothesis that the stage of plant development is the key factor governing the interception of radionuclides by crops having horizontally oriented leaves (planophile crops). The interception fraction (f) and the leaf area index normalized (fLAI) and mass normalized (fB) interception fractions were assessed for spinach (Spinacia oleracea) and radish (Raphanus sativus) at different stages of plant development and for different contamination treatments and plant densities. A database of 191 f values for Cs-137 and Th-229 was built and complemented with existing literature covering various radionuclides and crops with similar canopy structure. The overall f increased with the plant growth, while the reverse was observed for fB. The fLAI significantly decreased by doubling the contaminated rainfall deposited. Fitting a multiple linear regression to predict the f value as a function of the standing biomass (B), and the radionuclide form (anion and cation) led to a better estimation of the interception (R² = 81%) than the ECOSYS-87 model (R² = 35%). Hence, the simplified modelling approach here proposed seems to be a suitable risk assessment tool as fewer parameters will minimize the model complexity and facilitate the decision-making procedures in case of emergencies, when countermeasures need to be identified and implemented promptly.
Afficher plus [+] Moins [-]Long-term trace element assessment after a mine spill: Pollution persistence and bioaccumulation in the trophic web Texte intégral
2020
Fuentes, Inés | Márquez-Ferrando, Rocío | Pleguezuelos, Juan M. | Sanpera, Carola | Santos, Xavier
Trace elements can be toxic when they cannot be easily removed after entering an ecosystem, so a long-term assessment is fundamental to guide ecosystem restoration after catastrophic pollution. In 1998, a pyrite mining accident in Aznalcóllar (south-western Spain) spilled toxic waste over a large area of the Guadiamar river basin, where, after restoration tasks, the Guadiamar Green Corridor was established. Eight years after the mine accident (2005–2006), the ground-dwelling insectivorous lizard Psammodromus algirus registered high trace-element levels within the study area compared to specimens from a nearby unpolluted control site. In 2017, 20 years after the accident, we repeated the sampling for this lizard species and also quantified trace elements in vegetation as well as in arthropod samples in order to identify remnant trace-element accumulation with the aim of assessing the transfer of these elements through the trophic web. We found remnant trace-element contamination in organisms of the polluted site compared to those from the unpolluted site. All trace-element concentrations were higher in arthropods than in plants, suggesting these compounds bioaccumulate through the trophic web. Lizards from the polluted areas had higher As, Cd, and Hg concentrations than did individuals from the unpolluted area. Lizard abundance between sampling periods (2005–06 and 2017) did not vary in unpolluted transects but strongly declined at polluted ones. By contrast, the Normalized Difference Vegetation Index indicated that in the study period, the vegetation was similar at the two sampling sites. These results suggest that, 20 years after the accident, the trace-element pollution could be the cause of a severe demographic decline of the lizard in the polluted area.
Afficher plus [+] Moins [-]Impact of the Fukushima Dai-ichi Nuclear Power Plant Accident on the neon flying squids in the Northwest Pacific from 2011 to 2018 Texte intégral
2020
Men, Wu | Wang, Fenfen | Yu, Wen | He, Jianhua | Lin, Feng | Deng, Fangfang
Following nine years since the Fukushima Dai-ichi Nuclear Power Plant Acciden (FDNPPA), it might be the time to draw a much clearer conclusion for the impact of FDNPPA on marine biota. In this work, the evolution of the FDNPPA derived ¹³⁴Cs, ¹³⁷Cs and ¹¹⁰ᵐAg in the neon flying squids in the Northwest Pacific from 2011 to 2018 were studied. The background level of ¹³⁷Cs in neon flying squids (<0.10 Bq/kgfᵣₑₛₕ wₑᵢgₕₜ with the average of 0.017 Bq/kgfᵣₑₛₕ wₑᵢgₕₜ) before FDNPPA were estimated. The radioactive levels of ¹³⁴Cs, ¹³⁷Cs and ¹¹⁰ᵐAg in neon flying squids decreased with time. ¹³⁴Cs and ¹¹⁰ᵐAg decreased at the half-lives of 7.6 months and 5.7 months at the population level, respectively. After May 2014, ¹³⁴Cs and ¹¹⁰ᵐAg cannot be detected and ¹³⁷Cs activities returned to the background level before FDNPPA. BCFs of cesium isotopes (3.7–17.7 with the average of 10.8) and ¹¹⁰ᵐAg (∼7 × 10⁴) for neon flying squids were estimated. The amount of ¹¹⁰ᵐAg released into the Northwest Pacific (∼20-∼26 TBq) were firstly calculated using a ¹³⁴Cs/¹¹⁰ᵐAgₐcₜᵢᵥᵢₜy ᵣₐₜᵢₒ method. Radiation dose assessment demonstrated that it was far from causing radiation harm to neon flying squids in the open ocean of Northwest Pacific and humans who ingested these neon flying squids.
Afficher plus [+] Moins [-]Insights into potential consequences of fusion hypothetical accident, lessons learnt from the former fission accidents Texte intégral
2019
Nie, Baojie | Ni, Muyi | Liu, Jinchao | Zhu, Zhilin | Zhu, Zuolong | Li, Fengchen
From previous catastrophic fission nuclear accidents, such as the Chernobyl and Fukushima accidents, researchers learnt the lessons that external hazard beyond design basis or human errors could result in severe accidents and multi-failure of the confinements although they were considered as very-low-probability events and not requested to be paid much attention to according to the current nuclear safety regulations. Fusion energy is always regarded as a safe and clean energy. However, massive quantity of radioactivity still exists in the fusion reactor and is possible to be released into the environment. The environmental pollution and potential public consequences due to severe accidents of fusion reactor remain largely unexplored. In this contribution, we intended to investigate the hypothetical accident to envelop the worst but probable consequences of fusion reactor, and compare with historic Chernobyl and Fukushima accidents under assumed environmental conditions. It was demonstrated that, the radiation consequences of a hypothetical fusion accident would be much less severe than fission accidents, e.g. an INES 7 accident could not appear in a fusion reactor, as in the Chernobyl and Fukushima nuclear accidents. However, it would still be disastrous and the publics close to site might be exposed to “potentially lethal” radiation dose.
Afficher plus [+] Moins [-]