Affiner votre recherche
Résultats 1-10 de 94
Simultaneous changes of exogenous dissolved organic matter treated by ozonation in properties and interaction behavior with sulfonamides Texte intégral
2021
Lai, Chaochao | He, Caiwen | Han, Fengxia | Xu, Huayu | Huang, Bin | Dionysiou, Dionysios D. | Pan, Xuejun
Effluent is often treated with ozone before being discharged into a natural water environment. This process will change the interaction between effluent organic matter and pollutants in aquatic environment. The impact of ozonation on complexation between dissolved organic matter in such wastewater and sulfadimidine often found in natural water was studied in laboratory experiments using four types of real wastewater. Ozonation was found to decrease the proportion of organic matter with a molecular weight greater than 5 kDa as well as protein-like, fulvic-like and humic-like components, but except the proportion of hydrophilic components. The aromaticity of the dissolved organic matter was also reduced after ozonation. The complexation of tryptophan and tyrosine with sulfadimidine mainly depends on their hydrophobicity and large molecular weight. Ozonation of fulvic and humic acid tends to produce small and medium molecular weight hydrophilics. The complexation of humic and fulvic acids with sulfadimidine was enhanced by ozonation. Dissolved organic matter, with or without oxidation, were found to weaken sulfadimidine’s inhibition of microbial growth, especially for Aeromonas and Acinetobacter species. This finding will expand our understanding about the impact of advanced treatment processes on the dissolved organic matters’ properties in effluent.
Afficher plus [+] Moins [-]The cotreatment of old landfill leachate and domestic sewage in rural areas by deep subsurface wastewater infiltration system (SWIS): Performance and bacterial community☆ Texte intégral
2021
Chen, Fengming | Li, Guowen | Li, Xiaoguang | Wang, Hongqiang | Wu, Huabin | Li, Jiaxi | Li, Caole | Li, Wei | Zhang, Lieyu | Xi, Beidou
In this work, two deep subsurface wastewater infiltration systems (SWISs) were constructed and fed with domestic sewage (control system, S1) and mixed wastewater consisting of old landfill leachate and domestic sewage (experimental system, S2). S1 and S2 exhibited favorable removal efficiencies, with TP (98.8%, 98.7%), COD (87.6%, 86.9%), NH₄⁺-N (99.8%, 99.9%) and TN (99.2%, 98.9%). Even when increasing the pollutant load in S2 by adding old landfill leachate, the almost complete removal performance could be maintained in terms of low effluent concentrations and even increased in terms of load removal capabilities, which included COD (19.4, 25.9 g∙m⁻²·d⁻¹), NH₄⁺-N (8.2, 19.9 g∙m⁻²·d⁻¹), TN (8.9, 20.6 g∙m⁻²·d⁻¹). To investigate the transformation of dissolved organic matter along depth, Three-Dimensional Excitation Emission Matrix fluorescence spectroscopy combined with Fluorescence Regional Integration analysis was applied. The results showed that PⅠ,ₙ and PⅡ,ₙ (the proportions of biodegradable fractions) increased gradually from 6.59% to 21.8% at S2_20 to 10.8% and 27.7% at S2_110, but PⅢ,ₙ and PⅤ,ₙ (the proportions of refractory organics) declined from 23.1% to 27.8% at S2_20 to 21.1% and 16.4% at S2_110, respectively. In addition, high-throughput sequencing technology was employed to observe the bacterial community at different depths, and the predicted functional potential of the bacterial community was analyzed by PICRUSt. The results showed that the genera Flavobacterium, Pseudomonas, Vogesella, Acinetobacter and Aquabacterium might be responsible for refractory organic degradation and that their products might serve as the carbon source for denitrifiers to achieve simultaneous nitrate and refractory organic removal. PICRUSt further demonstrated that there was a mutual response between refractory organic degradation and denitrification. Overall, the combined treatment of domestic sewage and old leachate in rural areas by SWIS is a promising approach to achieve comprehensive treatment.
Afficher plus [+] Moins [-]Cadmium (II) alters the microbial community structure and molecular ecological network in activated sludge system Texte intégral
2019
Wang, Xiaohui | Ya, Tao | Zhang, Minglu | Liu, Lin | Hou, Pengfei | Lu, Shaoyong
Cadmium (II) can potentially alter the microbial community structure and molecular ecological network in activated sludge systems. In this study, we used Illumina sequencing combined with an RMT-based network approach to show the response of the microbial community and its network structure to Cd (II) in activated sludge systems. The results demonstrated that 1 mg/L Cd (II) did not have chronic negative effects on chemical oxygen demand (COD) reduction and denitrification processes, but negatively affected the nitrification process and phosphorus removal. In contrast, 10 mg/L Cd (II) adversely affected both COD and nutrient removal, and reduced the microbial diversity and changed the overall microbial community structure. The relative abundances of Nitrosomonadaceae, Nitrospira, Accumulibacter and Acinetobacter, which are involved in nitrogen removal, significantly decreased with increases in the Cd (II) concentration. In addition, molecular ecological network analysis showed that the networks sizes in the presence of higher levels of Cd (II) were smaller than in the control, but the nodes were more closely connected with neighbors. These shifts in bacterial abundance and the bacterial network structure may be responsible for the deterioration of COD and nutrient removal. Overall, this study provides new insights into the effects of Cd (II) on the bacterial community and its interactions in activated sludge systems.
Afficher plus [+] Moins [-]Integrative study of microbial community dynamics and water quality along The Apatlaco River Texte intégral
2019
Breton-Deval, Luz | Sánchez Flores, Alejandro | Juárez, Katy | Vera-Estrella, Rosario
The increasing demand for clean water resources for human consumption, is raising concerning about the sustainable worldwide provisioning. In Mexico, rivers near to high-density urbanizations are subject to irrational exploitation where polluted water is a risk for human health. Therefore, the aims of this study are to analyze water quality parameters and bacterial community dynamics to understand the relation between them, in the Apatlaco river, which presents a clear environmental perturbance. Parameters such as total coliforms, chemical oxygen demand, harness, ammonium, nitrite, nitrate, total Kjeldahl nitrogen, dissolved oxygen, total phosphorus, total dissolved solids, and temperature were analyzed in 17 sampling points along the river. The high pollution level was registered in the sampling point 10 with 480 mg/L chemical oxygen demand, 7 mg/L nitrite, 34 mg/L nitrate, 2 mg/L dissolved oxygen, and 299 mg/L of total dissolved solids. From these sites, we selected four samples for DNA extraction and performed a metagenomic analysis using a whole metagenome shotgun approach, to compare the microbial communities between polluted and non-polluted sites. In general, Proteobacteria was the most representative phylum in all sites. However, the clean water reference point was enriched with microorganism from the Limnohabitans genus, a planktonic bacterium widespread in freshwater ecosystems. Nevertheless, in the polluted sampled sites, we found a high abundance of potential opportunistic pathogen genera such as Acinetobacter, Arcobacter, and Myroides, among others. This suggests that in addition to water contamination, an imminent human health risk due to pathogenic bacteria can potentially affect a population of ∼1.6 million people dwelling nearby. These results will contribute to the knowledge regarding anthropogenic pollution on the microbial population dynamic and how they affect human health and life quality.
Afficher plus [+] Moins [-]Effects of Fe-S-As coupled redox processes on arsenic mobilization in shallow aquifers of Datong Basin, northern China Texte intégral
2018
Zhang, Junwen | Ma, Teng | Yan, Yani | Xie, Xianjun | Abass, Olusegun K. | Liu, Congqiang | Zhao, Zhiqi | Wang, Zhizhen
High arsenic groundwater generally coexists with elevated Fe2+ concentrations (mg L−1 levels) under reducing conditions, but an explanation for the extremely high arsenic (up to ∼2690) concentrations at very low Fe2+ (i.e., μg L−1 levels) in groundwater of Datong Basin remains elusive. Field groundwater investigation and laboratory microcosm experiments were implemented in this study. The field groundwater was characterized by weakly alkaline (pH 7.69 to 8.34) and reducing conditions (Eh −221.7 to −31.9 mV) and arsenic concentration averages at 697 μg L−1. Acinetobacter (5.9–51.3%), Desulfosporosinus (4.6–30.2%), Brevundimonas (3.9–19%) and Pseudomonas (3.2–14.6%) were identified as the dominant genera in the bacterial communities. Bacterially mediated arsenate reduction, Fe(III) reduction, and sulfate reduction are processes occurring (or having previously occurred) in the groundwater. Results from incubation experiment (27 d) revealed that nitrate, arsenate, and Fe(III)/sulfate reduced sequentially with time under anoxic conditions, while Fe(III) and sulfate reduction processes had no obvious differences, occurring almost simultaneously. Moreover, low Fe2+ concentrations were attributed to initially high pH conditions, which relatively retarded Fe(III) reduction. In addition, arsenic behavior in relation to groundwater redox conditions, matrices, and solution chemistry were elaborated. Bacterial arsenate reduction process proceeded before Fe(III) and sulfate reduction in the incubation experiment, and the total arsenic concentration (dominated by arsenite) gradually increased from ∼7 to 115 μg L−1 as arsenate was reduced. Accordingly, bacterially mediated reductive desorption of arsenate is identified as the main process controlling arsenic mobility, while Fe(III) reduction coupled with sulfate reduction are secondary processes that have also contributed to arsenic enrichment in the study site. Overall, this study provide important insights into the mechanism controlling arsenic mobility under weakly alkaline and reducing conditions, and furnishes that arsenate reduction by bacteria play a major role leading to high accumulation of desorbed arsenite in groundwater.
Afficher plus [+] Moins [-]Stable immobilization of uranium in iron containing environments with microbial consortia enriched via two steps accumulation method Texte intégral
2022
Zhu, Yuling | Sheng, Yating | Liu, Yuxin | Chen, Jiemin | He, Xiaoyun | Wang, Wenzhong | Hu, Baowei
The stable stabilization of uranium (U) in iron (Fe) containing environments is restricted by the reoxidation of UO₂. In the current study, based on air reoxidation tests, we propose a novel two steps accumulation method to enrich microbial consortia from paddy soil. The constructed microbial consortia, denoted as the Fe–U bacteria, can co-precipitate U and Fe to form stable Fe–U solids. Column experiments running for 4 months demonstrated the production of U(IV)–O–Fe(II) precipitates containing maximum of 39.51% uranium in the presence of Fe–U bacteria. The reoxidation experiments revealed the U(IV)–O–Fe(II) precipitates were more stable than UO₂. 16S rDNA high throughput sequencing analysis demonstrated that Acinetobacter and Stenotrophomonas were responsible for Fe and U precipitation, while, Caulobacteraceae and Aminobacter were crucial for the formation of U(VI)-PO₄ chemicals. The proposed two steps accumulation method has an extraordinary application potential in stable immobilization of uranium in iron containing environments.
Afficher plus [+] Moins [-]Keystone taxa shared between earthworm gut and soil indigenous microbial communities collaboratively resist chlordane stress Texte intégral
2021
Zhu, Guofan | Du, Ruijun | Du, Daolin | Qian, Jiazhong | Ye, Mao
Chlordane is an organochlorine pesticide that is applied extensively. Residual concentrations that remain in soils after application are highly toxic to soil organisms, particularly affecting the earthworm gut and indigenous soil microorganisms. However, response mechanisms of the earthworm gut and indigenous soil microorganism communities to chlordane exposure are not well known. In this study, earthworms (Metaphire guillelmi) were exposed to chlordane-contaminated soils to investigate their response mechanisms over a gradient of chlordane toxicity. Results from high-throughput sequencing and network analysis showed that the bacterial composition in the earthworm gut varied more significantly than that in indigenous soil microbial communities under different concentrations of chlordane stress (2.3–60.8 mg kg⁻¹; p < 0.05). However, keystone species of Flavobacterium, Candidatus Nitrososphaera, and Acinetobacter remained stable in both the earthworm gut and bacterial communities despite varying degrees of chlordane exposure, and their relative abundance was slightly higher in the low-concentration treatment group (T1, T2) than in the high-concentration treatment group (T3, T4). Additionally, network analysis demonstrated that the average value of the mean degree of centrality, closeness centrality, and eigenvector centrality of all keystone species screened by four methods (MetagenomeSeq, LEfSe, OPLS-DA, Random Forest) were 161.3, 0.5, and 0.63, respectively, and that these were significantly higher (p < 0.05) than values for non-keystone species (84.9, 0.4, and 0.2, respectively). Keystone species had greater network connectivity and a stronger capacity to degrade pesticides and transform carbon and nitrogen than non-keystone species. The keystone species, which were closely related to the microbial community in soil indigenous flora and earthworm intestinal flora, could resist chlordane stress and undertake pesticide degradation. These results have increased understanding of the role of the earthworm gut and indigenous soil bacteria in resisting chlordane stress and sustaining microbial equilibrium in soil.
Afficher plus [+] Moins [-]Microbial characteristic and bacterial community assessment of sediment sludge upon uranium exposure Texte intégral
2020
Zeng, Taotao | Mo, Guanhai | Hu, Qing | Wang, Guohua | Liao, Wei | Xie, Shuibo
The microbial characteristics and bacterial communities of sediment sludge upon different concentrations of exposure to uranium were investigated by high solution transmission electron microscopy (HRTEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS) and high-throughput sequencing. After exposure to initial uranium concentrations of 10–50 μM for 24 h in synthetic wastewater, the removal efficiencies of uranium reached 80.7%–96.5%. The spherical and short rod bacteria were dominant in the sludge exposed to uranium. HRTEM-EDS and XPS analyses indicated that reduction and adsorption were the main mechanisms for uranium removal. Short-term exposure to low concentrations of uranium resulted in a decrease in bacterial richness but an increase in diversity. A dramatic change in the composition and abundances of the bacterial community were present in the sediment sludge exposed to uranium. The highest removal efficiency was identified in the sediment sludge exposed to 30 μM uranium, and the dominant bacteria included Acinetobacter (44.9%), Klebsiella (20.0%), Proteiniclasticum (6.7%), Enterobacteriaceae (6.6%), Desulfovibrio (4.4%), Porphyromonadaceae (4.1%), Comamonas (2.4%) and Sedimentibacter (2.3%). By comparison to the inoculum sediment sludge, exposure to uranium caused a substantial difference in the majority of bacterial abundance.
Afficher plus [+] Moins [-]Stochastic determination of the spatial variation of potentially pathogenic bacteria communities in a large subtropical river Texte intégral
2020
Zhou, Lei | Liu, Li | Chen, Wei-Yuan | Sun, Ji-Jia | Hou, Shi-Wei | Kuang, Tian-Xu | Wang, Wen-Xiong | Huang, Xian-De
Understanding the composition and assembly mechanism of waterborne pathogen is essential for preventing the pathogenic infection and protecting the human health. Here, based on 16S rRNA sequencing, we investigated the composition and spatial variation of potentially pathogenic bacteria from different sections of the Pearl River, the most important source of water for human in Southern China. The results showed that the potential pathogen communities consisted of 6 phyla and 64 genera, covering 11 categories of potential pathogens mainly involving animal parasites or symbionts (AniP), human pathogens all (HumPA), and intracellular parasites (IntCelP). Proteobacteria (75.87%) and Chlamydiae (20.56%) were dominant at the phylum level, and Acinetobacter (35.01%) and Roseomonas (8.24%) were dominant at the genus level. Multivariate analysis showed that the potential pathogenic bacterial community was significantly different among the four sections in the Pearl River. Both physicochemical factors (e.g., NO₃–N, and suspended solids) and land use (e.g., urban land and forest) significantly shaped the pathogen community structure. However, spatial effects contributed more to the variation of pathogen community based on variation partitioning and path analysis. Null model based normalized stochasticity ratio analysis further indicated that the stochastic process rather than deterministic process dominated the assembly mechanisms by controlling the spatial patterns of potential pathogens. In conclusion, high-throughput sequencing shows great potential for monitoring the potential pathogens, and provided more comprehensive information on the potentially pathogenic community. Our study highlighted the importance of considering the influences of dispersal-related processes in future risk assessments for the prevention and control of pathogenic bacteria.
Afficher plus [+] Moins [-]Heat stress during late gestation disrupts maternal microbial transmission with altered offspring’s gut microbial colonization and serum metabolites in a pig model Texte intégral
2020
He, Jianwen | Zheng, Weijiang | Tao, Chengyuan | Guo, Huiduo | Xue, Yongqiang | Zhao, Ruqian | Yao, Wen
Heat stress (HS) during gestation has been associated with negative outcomes, such as preterm birth or postnatal metabolic syndromes. The intestinal microbiota is a unique ecosystem playing an essential role in mediating the metabolism and health of mammals. Here we hypothesize late gestational HS alters maternal microbial transmission and structures offspring’s intestinal microbiota and serum metabolic profiles. Our results show maternal HS alters bacterial β-diversity and composition in sows and their piglets. In the maternal intestine, genera Ruminococcaceae UCG-005, [Eubacterium] coprostanoligenes group and Halomonas are higher by HS (q < 0.05), whereas the populations of Streptococcus, Bacteroidales RF16 group_norank and Roseburia are decreased (q < 0.05). In the maternal vagina, HS mainly elevates the proportions of phylum Bacteroidetes and Fusobacteria (q < 0.05), whereas reduces the population of Clostridiales Family XI (q < 0.05). In the neonatal intestine, maternal HS promotes the population of Proteobacteria but reduces the relative abundance of Firmicutes (q < 0.05). Moreover, the core Operational taxonomic units (OTU) analysis indicates the proportions of Clostridium sensu stricto 1, Romboutsia and Turicibacter are decreased by maternal HS in the intestinal and vaginal co-transmission, whereas that of phylum Proteobacteria and Epsilonbacteraeota, such as Escherichia-Shigella, Klebsiella, Acinetobacter, and Comamonas are increased in both the intestinal and vaginal co-transmission and the vagina. Additionally, Aeromonas is the only genus that is transmitted from environmental sources. Lastly, we evaluate the importance of neonatal differential OTU for the differential serum metabolites. The results indicate Acinetobacter significantly contributes to the differences in the adrenocorticotropic hormone (ACTH) and glucose levels due to HS (P < 0.05). Further, Stenotrophomonas is the most important variable for Cholesterol, low-density lipoprotein (LDL), diamine oxidase (DAO), blood urea nitrogen (BUN) and 5-hydroxytryptamine (5-HT) (P < 0.10). Overall, our data provides evidence for the maternal HS in establishing the neonatal microbiota via affecting maternal transmission, which in turn affects the maintenance of metabolic health.
Afficher plus [+] Moins [-]