Affiner votre recherche
Résultats 1-10 de 585
Synthesis of Activated Carbon from Sugarcane Bagasse and Application for Mercury Adsorption
2019
Javidi Alsadi, k. | Esfandiari, N.
With the growth and development of chemical plants, the amount of mercury released in wastewater has increased. Mercury in wastewater contains harmful compounds which are hazardous to the human health and living organisms. Therefore, its removal from wastewater is significant. There are various techniques or methods available for removing mercury from aqueous solutions. This study focused upon the removal of mercury from aqueous solution with commercial activated carbon and activated carbon from sugarcane bagasse. Activated carbon produced from sugarcane bagasse was used as adsorbent. This adsorbent was used to remove mercury from aqueous solution. For this purpose, first, the optimal mercury solution pH for mercury removal was obtained. Effective parameters such as contact time, initial concentration of mercury, adsorbent dose and agitation speed were investigated. The mercury adsorption was increased when the mass of activated carbon was increased. Increasing the initial mercury concentration leads to decrease in mercury adsorption efficiency. The results of experiments indicated that the speed of the stirrer was not considered to be an effective factor in the mercury adsorption. Experiments were also carried out on a commercial activated carbon. Adsorption results obtained for sugarcane bagasse activated carbon were compared with commercial activated carbon. The adsorption efficiency was increased as the contact time was increased. Finally, the experiment was carried out on water samples released from South Pars platforms. In addition to the mercury removal, other heavy metals removal such as lead and cadmium were also carried out.
Afficher plus [+] Moins [-]Elimination de l' ammoniac sur divers adsorbants: charbons actifs, tourbe et boues de station d' epuration.
1994
Samanni Vaute L. | Fanlo J.L. | Le Cloirec P.
Carbon nanomaterials for the detection of pesticide residues in food: A review
2022
Mishra, Smriti | Mishra, Shivangi | Patel, Shiv Singh | Singh, Sheelendra Pratap | Kumar, Pradip | Khan, Mohd Akram | Awasthi, Himani | Singh, Shiv
In agricultural fields, pesticides are widely used, but their residual presence in the environment poses a threat to humans, animals, insects, and ecosystems. The overuse of pesticides for pest control, enhancement of crop yield, etc. leaves behind a significant residual amount in the environment. Various robust, reliable, and reusable methods using a wide class of composites have been developed for the monitoring and controlling of pesticides. Researchers have discovered that carbon nanomaterials have a wide range of characteristics such as high porosity, conductivity and easy electron transfer that can be successfully used to detect pesticide residues from food. This review emphasizes the role of carbon nanomaterials in the field of pesticide residue analysis in different food matrices. The carbon nanomaterials including carbon nanotubes, carbon dots, carbon nanofibers, graphene/graphene oxides, and activated carbon fibres are discussed in the review. In addition, the review examines future prospects in this research area to help improve detection techniques for pesticides analysis.
Afficher plus [+] Moins [-]Mitigation of hazardous toluene via ozone-catalyzed oxidation using MnOx/Sawdust biochar catalyst
2022
Cha, Jin Sun | Kim, Young-Min | Lee, Im Hack | Choi, Yong Jun | Rhee, Gwang Hoon | Song, Hocheol | Jeon, Byong-Hun | Lam, Su Shiung | Khan, Moonis Ali | Andrew Lin, Kun-Yi | Chen, Wei-Hsin | Park, Young-Kwon
This study investigated catalytic ozone oxidation using a sawdust char (SDW) catalyst to remove hazardous toluene emitted from the chemical industry. The catalyst properties were analyzed by proximate, ultimate, nitrogen adsorption-desorption isotherms, Fourier-transform infrared, and X-ray photoelectron spectroscopy analyses. In addition, hydrogen-temperature programmed reduction experiments were conducted to analyze the catalyst properties. The specific area and formation of micropores of SDC were improved by applying KOH treatment. MnOx/SDC-K3 exhibited a higher toluene removal efficiency of 89.7% after 100 min than MnOx supported on activated carbon (MnOx/AC) with a removal efficiency of 6.6%. The higher (Oₐdₛ (adsorbed oxygen)+Oᵥ(vacancy oxygen))/OL (lattice oxygen) and Mn³⁺/Mn⁴⁺ ratios of MnOx/SDC-K3 than those of MnOx/AC seemed to be important for the catalytic oxidation of toluene.
Afficher plus [+] Moins [-]Changing bioavailability of per- and polyfluoroalkyl substances (PFAS) to plant in biosolids amended soil through stabilization or mobilization
2022
Zhang, Weilan | Liang, Yanna
Biosolids containing per- and polyfluoroalkyl substances (PFAS) could contaminate the receiving environments once they are land applied. In this study, we evaluated the feasibility of controlling the bioavailability of PFAS in biosolids to timothy-grass through stabilization or mobilization approaches. Stabilization was accomplished by adding a sorbent (i.e. granular activated carbon (GAC), RemBind, biochar) to biosolids, while mobilization was achieved by adding a surfactant, sodium dodecyl sulphate (SDS), to biosolids. The results showed that the ΣPFAS concentration in grass shoots grown in biosolids amended soil treated by GAC or RemBind at 2% was only 2.77% and 3.35% of the ΣPFAS concentration detected in shoots grown in biosolids amended soil without a sorbent, respectively, indicating the effectiveness of GAC and RemBind for stabilizing PFAS and reduce their bioavailability. On the other hand, mobilization by adding SDS to biosolids at a dose range of 10–100 mg/kg significantly increased the plant uptake of ΣPFAS by 15.48%–108.57%. Thus, mobilization by adding SDS could be a valuable approach for enhancing the PFAS removal if phytoremediation is applied. Moreover, higher rate of PFAS uptake took place after grass cutting was observed in this study. Thus, proper mowing and regrowth of timothy-grass could lead to efficient and cost-effective removal of PFAS from biosolids amended soil through phytoremediation and leave the site clean to be used for other purposes.
Afficher plus [+] Moins [-]Non-target screening of micropollutants and transformation products for assessing AOP-BAC treatment in groundwater
2022
Tisler, Selina | Tüchsen, Peter L. | Christensen, Jan H.
Standard monitoring programs give limited insight into groundwater status, especially transformation products (TPs) formed by natural processes or advanced oxidation processes (AOP), are normally underrepresented. In this study, using suspect and non-target screening, we performed a comprehensive analysis of groundwater before and after AOP by UV/H₂O₂ and consecutively installed biological activated carbon filters (BAC). By non-target screening, up to 413 compounds were detected in the groundwater, with an average 70% removal by AOP. However, a similar number of compounds were formed during the process, shown in groundwater from three waterworks. The most polar compounds were typically the most stable during the AOP. A subsequent BAC filter showed removal of 95% of the TPs, but only 46% removal of the AOP remaining precursors. The BAC removal for polar compounds was highly dependent on the acidic and basic functional groups of the molecules. 49 compounds of a wide polarity range could be identified by supercritical fluid chromatography (SFC) and liquid chromatography (LC) with high resolution mass spectrometry (HRMS); of these, 29 compounds were already present in the groundwater. To the best of our knowledge, five compounds have never been reported before in groundwater (4-chlorobenzenesulfonic acid, dibutylamine, N-phenlybenzenesulfonamide, 2-(methylthio)benzothiazole and benzothiazole-2-sulfonate). A further five rarely reported compounds are reported for the first time in Danish groundwater (2,4,6-trichlorophenol, 2,5-dichlorobenzenesulfonic acid, trifluormethansulfonic acid, pyrimidinol and benzymethylamine). Twenty of the identified compounds were formed by AOP, of which 10 have never been reported before in groundwater. All detected compounds could be related to agricultural and industrial products as well as artificial sweeteners. Whereas dechlorination was a common AOP degradation pathway for chlorophenols, the (ultra-) short chain PFAs showed no removal in our study. We prioritized 11 compounds as of concern, however, the toxicity for many compounds remains unknown, especially for the TPs.
Afficher plus [+] Moins [-]Per- and polyfluoroalkyl substance (PFAS) retention by colloidal activated carbon (CAC) using dynamic column experiments
2022
Niarchos, Georgios | Ahrens, Lutz | Kleja, Dan Berggren | Fagerlund, Fritjof
Developing effective remediation methods for per- and polyfluoroalkyl substance (PFAS)-contaminated soils is a substantial step towards counteracting their widespread occurrence and protecting our ecosystems and drinking water sources. Stabilisation of PFAS in the subsurface using colloidal activated carbon (CAC) is an innovative, yet promising technique, requiring better understanding. In this study, dynamic soil column tests were used to assess the retardation of 10 classical perfluoroalkyl acids (PFAAs) (C₅–C₁₁ perfluoroalkyl carboxylic acids (PFCAs) and C₄, C₆, C₈ perfluoroalkane sulfonates (PFSAs)) as well as two alternative PFAS (6:2 and 8:2 fluorotelomer sulfonates) using CAC at 0.03% w/w, to investigate the fate and transport of PFAS under CAC treatment applications. Results showed high retardation rates for long-chain PFAS and eight times higher retardation for the CAC-treated soil compared to the non-treated reference soil for the ∑PFAS. Replacement of shorter chain perfluorocarboxylic acids (PFCAs), such as perfluoropentanoic acid (PFPeA), by longer chained PFAS was observed, indicating competition effects. Partitioning coefficients (Kd values) were calculated for the CAC fraction at ∼10³–10⁵ L kg⁻¹ for individual PFAS, while there was a significant positive correlation (p < 0.05) between perfluorocarbon chain length and Kd. Mass balance calculations showed 37% retention of ∑PFAS in treated soil columns after completion of the experiments and 99.7% higher retention rates than the reference soil. Redistribution and elution of CAC were noticed and quantified through organic carbon analysis, which showed a 23% loss of carbon during the experiments. These findings are a step towards better understanding the extent of CAC's potential for remediation of PFAS-contaminated soil and groundwater and the limitations of its applications.
Afficher plus [+] Moins [-]Enhancing inhibition of disinfection byproducts formation and opportunistic pathogens growth during drinking water distribution by Fe2O3/Coconut shell activated carbon
2021
Xing, Xueci | Li, Tong | Bi, Zhihao | Qi, Peng | Li, Zesong | Wang, Haibo | Lyu, Lai | Gao, Yaowen | Hu, Jun
The effects of biological activated carbon treatment using Fe₂O₃ modified coconut shell-based activated carbon (Fe/CAC) were investigated on the occurrence of opportunistic pathogens (OPs) and formation of disinfection by-products (DBPs) in simulated drinking water distribution systems (DWDSs) with unmodified CAC as a reference. In the effluent of annular reactor (AR) with Fe/CAC, the OPs growth and DBPs formation were inhibited greatly. Based on the differential pulse voltammetry and dehydrogenase activity tests, it was verified that extracellular electron transfer was enhanced in the attached biofilms of Fe/CAC, hence improving the microbial metabolic activity and biological removal of organic matter especially DBPs precursors. Meanwhile, the extracellular polymeric substances (EPS) on the surface of Fe/CAC exhibited stronger viscosity, higher flocculating efficiency and better mechanical stability, avoiding bacteria or small-scale biofilms falling off into the water. Consequently, the microbial biomass and EPS substances amount decreased markedly in the effluent of Fe/CAC filter. More importantly, Fe/CAC did significantly enhance the shaping role on microbial community of downstream DWDSs, continuously excluding OPs advantage and inhibiting EPS production. The weakening of EPS in DWDSs resulted in decrease of microbial chlorine-resistance ability and EPS-derived DBPs precursors supply. Therefore, the deterioration of water quality in DWDSs was inhibited greatly, sustainably maintaining the safety of tap water. Our findings indicated that optimizing biological activated carbon treatment by interface modification is a promising method for improving water quality in DWDSs.
Afficher plus [+] Moins [-]De facto reuse at the watershed scale: Seasonal changes, population contributions, instream flows and water quality hazards of human pharmaceuticals
2021
Švecová, Helena | Grabic, Roman | Grabicová, Kateřina | Vojs Staňová, Andrea | Fedorova, Ganna | Cerveny, Daniel | Turek, Jan | Randák, Tomáš | Brooks, Bryan W.
With increasing population growth and climate change, de facto reuse practices are predicted to increase globally. We investigated a longitudinal gradient within the Uhlava River, a representative watershed, where de facto reuse is actively occurring, during Fall and Spring seasons when instream flows vary. We observed human pharmaceutical levels in the river to continuously increase from the mountainous areas upstream to downstream locations and a potable intake location, with the highest concentrations found in small tributaries. Significant relationship was identified between mass flow of pharmaceuticals and the size of human populations contributing to wastewater treatment plant discharges. Advanced ozonation and granular activated carbon filtration effectively removed pharmaceuticals from potable source waters. We observed a higher probability of encountering a number of targeted pharmaceuticals during colder Spring months when stream flows were elevated compared to warmer conditions with lower flows in the Fall despite a dilution paradigm routinely applied for surface water quality assessment and management efforts. Such observations translated to greater water quality hazards during these higher Spring flows. Future water monitoring efforts should account for periods when higher chemical uses occur, particularly in the face of climate change for regions experiencing population growth and de facto reuse.
Afficher plus [+] Moins [-]Highly effective adsorption of antibiotics from water by hierarchically porous carbon: Effect of nanoporous geometry
2021
Xu, Liheng | Zhang, Mengxue | Wang, Yuanyu | Wei, Fang
Pharmaceutical antibiotics have recently become emerging environmental contaminants. To enhance the removal efficiency of antibiotics in water, hierarchically porous carbons (HPCs) with designed porous patterns are used in both batch and column mode adsorption processes in this study, and the role of their nanoporous geometry in the adsorption dynamics are explored. THPC (HPC with trimodal pores) and DHPC (HPC with bimodal pores) exhibit remarkably superior adsorption performances to the selected antibiotics than those of commercial activated carbon (AC) with similar surface area, especially in column mode adsorption. The effective treatment volumes of the HPC-columns remain up to 8–10 times those of the AC-columns for the removal of tetracycline and 4–6 times for the removal of tylosin. The mass transfer rates of the carbon-based columns present the order of THPC > DHPC > AC. As comparison, the columns based on monomodal mesoporous carbon (MEC) and microporous carbon (MAC) exhibit low effective treatment volumes although their high mass transfer speed. The interconnected meso/macropores in HPCs benefit the intraparticle mass transfer of guest molecules and the accessibility of adsorption sites. The micropores linking to the meso/macropores not only provide adsorption sites but also facilitate adsorption affinity.
Afficher plus [+] Moins [-]