Affiner votre recherche
Résultats 1-10 de 583
Synthesis of Activated Carbon from Sugarcane Bagasse and Application for Mercury Adsorption
2019
Javidi Alsadi, k. | Esfandiari, N.
With the growth and development of chemical plants, the amount of mercury released in wastewater has increased. Mercury in wastewater contains harmful compounds which are hazardous to the human health and living organisms. Therefore, its removal from wastewater is significant. There are various techniques or methods available for removing mercury from aqueous solutions. This study focused upon the removal of mercury from aqueous solution with commercial activated carbon and activated carbon from sugarcane bagasse. Activated carbon produced from sugarcane bagasse was used as adsorbent. This adsorbent was used to remove mercury from aqueous solution. For this purpose, first, the optimal mercury solution pH for mercury removal was obtained. Effective parameters such as contact time, initial concentration of mercury, adsorbent dose and agitation speed were investigated. The mercury adsorption was increased when the mass of activated carbon was increased. Increasing the initial mercury concentration leads to decrease in mercury adsorption efficiency. The results of experiments indicated that the speed of the stirrer was not considered to be an effective factor in the mercury adsorption. Experiments were also carried out on a commercial activated carbon. Adsorption results obtained for sugarcane bagasse activated carbon were compared with commercial activated carbon. The adsorption efficiency was increased as the contact time was increased. Finally, the experiment was carried out on water samples released from South Pars platforms. In addition to the mercury removal, other heavy metals removal such as lead and cadmium were also carried out.
Afficher plus [+] Moins [-]Elimination de l' ammoniac sur divers adsorbants: charbons actifs, tourbe et boues de station d' epuration.
1994
Samanni Vaute L. | Fanlo J.L. | Le Cloirec P.
Low effect of phenanthrene bioaccessibility on its biodegradation in diffusely contaminated soil
2017
Crampon, M. | Cébron, A. | Portet-Koltalo, F. | Uroz, S. | Le Derf, F. | Bodilis, J. | Chimie Organique et Bioorganique : Réactivité et Analyse (COBRA) ; Institut de Chimie Organique Fine (IRCOF) ; Université de Rouen Normandie (UNIROUEN) ; Normandie Université (NU)-Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie) ; Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université de Rouen Normandie (UNIROUEN) ; Normandie Université (NU)-Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie) ; Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Institut Normand de Chimie Moléculaire Médicinale et Macromoléculaire (INC3M) ; Université de Caen Normandie (UNICAEN) ; Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN) ; Normandie Université (NU)-Université Le Havre Normandie (ULH) ; Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN) ; Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie) ; Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN) ; Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN) ; Normandie Université (NU)-Université Le Havre Normandie (ULH) ; Normandie Université (NU)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS) | Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) ; Université de Rouen Normandie (UNIROUEN) ; Normandie Université (NU)-Normandie Université (NU) | Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC) ; Institut Ecologie et Environnement (INEE) ; Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Terre et Environnement de Lorraine (OTELo) ; Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS) | Unité de recherche Biogéochimie des Ecosystèmes Forestiers (BEF) ; Institut National de la Recherche Agronomique (INRA) | Interactions Arbres-Microorganismes (IAM) ; Institut National de la Recherche Agronomique (INRA)-Université de Lorraine (UL) | Laboratoire d'Ecologie Microbienne - UMR 5557 (LEM) ; Institut National de la Recherche Agronomique (INRA)-Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Université de Lyon-Ecole Nationale Vétérinaire de Lyon (ENVL)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS) | "Region Haute Normandie" (France) through the Normandy SCALE research network
International audience | This study focused on the role of bioaccessibility in the phenanthrene (PHE) biodegradation in diffusely contaminated soil, by combining chemical and microbiological approaches.First, we determined PHE dissipation rates and PHE sorption/desorption isotherms for two soils (PPY and Pv) presenting similar chronic PAH contamination, but different physico-chemical properties.Our results revealed that the PHE dissipation rate was significantly higher in the Pv soil compared to the PPY soil, while PHE sorption/desorption isotherms were similar. Interestingly, increases of PHE desorption and potentially of PHE bioaccessibility were observed for both soils when adding rhamnolipids (biosurfactants produced by Pseudomonas aeruginosa). Second, using C-13-PHE incubated in the same soils, we analyzed the PHE degrading bacterial communities. The combination of stable isotope probing (DNA-SIP) and 16S rRNA gene pyrosequencing revealed that Betaproteobacteria were the main PHE degraders in the Pv soil, while a higher bacterial diversity (Alpha-, Beta-, Gammaproteobacteria and Actinobacteria) was involved in PHE degradation in the PPY soil. The amendment of biosurfactants commonly used in biostimulation methods (i.e. rhamnolipids) to the two soils clearly modified the PHE sorption/desorption isotherms, but had no significant impact on PHE degradation rates and PHE-degraders identity.These results demonstrated that increasing the bioaccessibility of PHE has a low impact on its degradation and on the functional populations involved in this degradation.
Afficher plus [+] Moins [-]Removal of organic matter from water using activated carbon produced from domestic [Yugoslav] anthracite
1999
Tamas, Z. | Zejak, J. | Becelic, M. (Prirodno-matematicki fakultet, Novi Sad (Yugoslavia). Institut za hemiju)
Removal of natural organic matter from water was investigated using granulated activated carbon. Groundwater from northern Banat region (Serbia, Yugoslavia) was used. Samples of raw water and water after coagulation were ozonated and than GAC adsorption was performed. The investigation was carried out under the static conditions to determine the GAC adsorption capacity and kinetic coefficients.
Afficher plus [+] Moins [-]Non-target screening of micropollutants and transformation products for assessing AOP-BAC treatment in groundwater
2022
Tisler, Selina | Tüchsen, Peter L. | Christensen, Jan H.
Standard monitoring programs give limited insight into groundwater status, especially transformation products (TPs) formed by natural processes or advanced oxidation processes (AOP), are normally underrepresented. In this study, using suspect and non-target screening, we performed a comprehensive analysis of groundwater before and after AOP by UV/H₂O₂ and consecutively installed biological activated carbon filters (BAC). By non-target screening, up to 413 compounds were detected in the groundwater, with an average 70% removal by AOP. However, a similar number of compounds were formed during the process, shown in groundwater from three waterworks. The most polar compounds were typically the most stable during the AOP. A subsequent BAC filter showed removal of 95% of the TPs, but only 46% removal of the AOP remaining precursors. The BAC removal for polar compounds was highly dependent on the acidic and basic functional groups of the molecules. 49 compounds of a wide polarity range could be identified by supercritical fluid chromatography (SFC) and liquid chromatography (LC) with high resolution mass spectrometry (HRMS); of these, 29 compounds were already present in the groundwater. To the best of our knowledge, five compounds have never been reported before in groundwater (4-chlorobenzenesulfonic acid, dibutylamine, N-phenlybenzenesulfonamide, 2-(methylthio)benzothiazole and benzothiazole-2-sulfonate). A further five rarely reported compounds are reported for the first time in Danish groundwater (2,4,6-trichlorophenol, 2,5-dichlorobenzenesulfonic acid, trifluormethansulfonic acid, pyrimidinol and benzymethylamine). Twenty of the identified compounds were formed by AOP, of which 10 have never been reported before in groundwater. All detected compounds could be related to agricultural and industrial products as well as artificial sweeteners. Whereas dechlorination was a common AOP degradation pathway for chlorophenols, the (ultra-) short chain PFAs showed no removal in our study. We prioritized 11 compounds as of concern, however, the toxicity for many compounds remains unknown, especially for the TPs.
Afficher plus [+] Moins [-]Effective removal of excessive fluoride from aqueous environment using activated pods of Bauhinia variegata: Batch and dynamic analysis
2021
Jayashree, D Eunice | Kumar, P Senthil | Ngueagni, P Tsopbou | Vo, Dai-VietN. | Chew, Kit Wayne
In this study, a novel biosorbent is prepared from the pods of Bauhinia variegata is used for defluoridation of the fluoride contaminated water. It is an eco-friendly and economically feasible material. Comparison of adsorption capacity of Physically Treated Bauhinia (PTB) and Chemically Treated Bauhinia (CTB) are carried in this work. Characterization studies like SEM, EDS, FTIR, and XRD are executed to analyze surface morphology and functional groups in PTB and CTB. The experimental procedure was implemented in a batch process where the operating constraints such as dosage, pH, initial fluoride concentration, time, and temperature are varied to attain optimized efficiency. PTB and CTB yield an adsorption capacities of 10.90 mg/g and 15.45 mg/g respectively in the batch process. PTB adheres fluoride in monolayer formation whereas CTB forms multilayer adsorption. The adsorption process was described by the Pseudo first-order model to state the mechanism of physisorption. The negative values of thermodynamic parameters indicate spontaneity and favorable conditions for adsorption process. As CTB has a higher adsorption capacity than PTB, the batch study has been extended to column adsorption. Bed depth, initial fluoride concentration, and flow rate are the experimental variables used to acquire breakthrough curves. Simplified column models like Adam-Bohart, Thomas, and Yoon-Nelson models were analyzed. In column studies, Yoon-Nelson model fitted well in describing the process of adsorption. The maximum adsorption capacity acquired during the column process was found to be 1.176 mg/g with a bed depth of 5 cm and a flow rate of 5 ml/min. Thus, the innocuous and sustainable adsorbent is developed and serves as an excellent defluoridation agent.
Afficher plus [+] Moins [-]Powdered activated carbon (PAC) amendment enhances naphthalene biodegradation under strictly sulfate-reducing conditions
2021
Pagnozzi, Giovanna | Carroll, Sean | Reible, Danny D. | Millerick, Kayleigh
Capping represents an efficient and well-established practice to contain polycyclic aromatic hydrocarbons (PAHs) in sediments, reduce mobility, and minimize risks. Exposure to PAHs can encourage biodegradation, which can improve the performance of capping. This study investigates biodegradation of naphthalene (a model PAH) in highly reducing, sediment-like environments with amendment of different capping materials (PAC and sand). Microcosms were prepared with sediment enrichments, sulfate as an electron acceptor, and naphthalene. Results show that PAC stimulates naphthalene biodegradation and mineralization, as indicated by production of ¹⁴CO₂ from radiolabeled naphthalene. Mineralization in PAC systems correlates with the enrichment of genera (Geobacter and Desulfovirga) previously identified to biodegrade naphthalene (Spearman’s, p < 0.05). Naphthalene decay in sand and media-free systems was not linked to biodegradation activity (ANOVA, p > 0.05), and microbial communities were correlated to biomass yields rather than metabolites. Naphthalene decay in PAC systems consists of three stages with respect to time: latent (0–88 days), exponential decay (88–210 days), and inactive (210–480 days). This study shows that PAC amendment enhances naphthalene biodegradation under strictly sulfate-reducing conditions and provides a kinetic and metagenomic characterization of systems demonstrating naphthalene decay.
Afficher plus [+] Moins [-]Concentrations and distributions of neonicotinoids in drinking water treatment plants in South Korea
2021
Kim, Jiwon | Wang, Wenting | Lee, Soohyung | Park, Ju-Hyun | Oh, Jeong-Eun
We investigated the fates of seven neonicotinoids (NNIs) in full-scale drinking water treatment plants and assessed human exposure to NNIs through consuming drinking water. The total NNI concentrations in raw water and treated water samples from the drinking water treatment plants were 20.4–166 ng/L (median 118 ng/L) and 1.11–94.7 ng/L (median 20.4 ng/L), respectively. The dinotefuran (DIN) concentrations in raw water collected in different seasons were different, and the highest DIN concentration was found in summer. The drinking water treatment processes removed >91% of the NNIs except DIN and thiamethoxam (THIAM), for which the mean removal rates were 70% and 74%, respectively. The removal rates for all of the NNIs were higher for the granular activated carbon filtration process (mean 83.5%) than the other drinking water treatment plant processes (coagulation/sedimentation 22.3%, ozonation 29.2%). However, the removal rates in the granular activated carbon process were lower for DIN and THIAM (61.0% and 59.2%, respectively) than the other NNIs. Significant correlations were found between the NNI removal rates and physicochemical properties (solubility in water and log (octanol–water partition coefficient)). The estimated mean human exposure to NNIs in drinking water was 0.528 ng/(kg body weight d).
Afficher plus [+] Moins [-]Validation and deployment of a quantitative trapping method to measure volatile antimony emissions
2021
Caplette, Jaime N. | Grob, Matthias | Mestrot, Adrien
Microbial-mediated Sb volatilization is a poorly understood part of the Sb biogeochemical cycle. This is mostly due to a lack of laboratory and field-deployable methods that are capable of quantifying low-level emissions of Sb from diffuse sources. In this study, we validated two methods using a H₂O₂ -HNO₃ liquid chemotrap and an activated coconut shell charcoal solid-phase trap, achieving an absolute limit of detection of 4.6 ng and below 2.0 ng Sb, respectively. The activated charcoal solid-phase trapping method, the most easily operated method, was then applied to contaminated shooting range soils. Four treatments were tested: 1) flooded, 2) manure amended + flooded, 3) 70 % water holding capacity, and 4) manure amendment +70 % water holding capacity, since agricultural practices and flooding events may contribute to Sb volatilization. Volatile Sb was only produced from flooded microcosms and manure amendment greatly influenced the onset and amount of volatile Sb produced. The highest amount of volatile Sb produced, up to 62.1 ng kg⁻¹ d⁻¹, was from the flooded manure amended soil. This suggests that anaerobic microorganisms may potentially be drivers of Sb volatilization. Our results show that polluted shooting range soils are a source of volatile Sb under flooded conditions, which may lead to an increase in the mobility of Sb. Some of these volatile Sb species are toxic and genotoxic, highlighting the role of Sb volatilization on environmental health, especially for individuals living in contaminated areas exposed to wetlands or flooded conditions (e.g., rice paddy agriculture surrounding mining areas). This work paves way for research on Sb volatilization in the environment.
Afficher plus [+] Moins [-]Detection of Hg(II) in adsorption experiment by a lateral flow biosensor based on streptavidin-biotinylated DNA probes modified gold nanoparticles and smartphone reader
2020
Guo, Zizhang | Kang Yan, | Liang, Shuang | Zhang, Jian
The increased occurrence of Mercury (Hg II) contaminant has caused environmental and health concerns worldwide. Removal of Hg(II) from water is of significant interest, in particular if these can be coupled in a manner of detection. Here, a novel activated carbon (AC) adsorbent and a fast detection device to form a closed-cycle strategy was developed. The synthesis of conjugates of streptavidin-biotinylated DNA probes modified gold nanoparticle was used with lateral flow biosensors for Hg(II) detection. A quantification was completed via a self-developed smartphone app and its limit of detection was 2.53 nM. Moreover, AC was activated with a new activating agent of diammonium hydrogen phosphate. The adsorbent was characterized and determined to have an amorphous microporous structure with a high surface area (1076.5 m² g⁻¹) and demonstrated excellent removal efficiency (99.99%) and adsorption capacity (∼100 mg g⁻¹) for Hg(II). The kinetics of the pseudo-second-order model and the mechanisms of electrostatic adsorption, ion exchange, and complex reactions are provided. The proposed closed-cycle strategy can be useful for early, fast, and mobile detection of Hg (II) pollution, followed by its effective removal during water treatment.
Afficher plus [+] Moins [-]