Affiner votre recherche
Résultats 1-10 de 1,347
Aeration, Alum, and Kaolin Ore for Nutrient and Heavy Metal Removal from Urban Wastewater for the Purpose of Reuse and Conservation
2023
Soliman, Mohamed | Rashed, Mohamed | Soltan, Mohamed
Domestic and industrial wastewater contributed to some urban wastewater, which requires specific processing before being disposed into surface waters or reused for irrigation. This paper aimed to employ kaolin as an adsorbent to remove heavy metals from wastewater, as well as aeration and alum to remove nutrients. Experiment were conducted in three parts: first, involved using the aeration method to determine the ideal amount of time to remove or minimize the nutrients. Second, involves treating the solution with potassium alum using various alum doses at the obvious times to eliminate or minimize the nutrients, while third step involves treating the solution with kaolin ore with a size of < 63 µm at various doses, pH, and contact times to remove heavy metals. The findings showed that the aeration method completely removed CO3, OH, PO4, NO3, Ca, and Mn ions after contact time equal 120, 24, 192, 24, 120, and 48 hrs, respectively. Applaying alum treatment method can remove completely CO3, OH, PO4, NO3, and Mn, after contact time 120, 24, 120, 24, and 24 hrs, respectively. When Kaolin ore used as adsorbent, the removal efficiency of Fe, Cd, Cr, Cu, Sr, Mn, and Zn were; 92, 100, 100, 100, 94, 100, and 88 % ,respectively in 24 hours contact time. The experiment succeeds in treatment of industrial wastewater that was within the range of specified limitations for disposing into surface water or reuse in irrigation field as stated by Egyptian standard code using the three successive treatment techniques.
Afficher plus [+] Moins [-]Low-temperature aerobic carbonization and activation of cellulosic materials for Pb2+ removal in water source
2022
Ai, Shuo | Qin, Yue | Hong, Yuxiang | Liu, Linghui | Yu, Wanguo
Targeting the removal of Pb²⁺ in wastewater, cellulosic materials were carbonized in an aerobic environment and activated via ion exchange. The maximum adsorption capacity reached 243.5 mg/g on an MCC-derived adsorbent activated with sodium acetate. The modified porous properties improved the adsorption capacity. The capacity could be completely recovered five times through elution with EDTA. Because of the negative effects of Ni, Mg, and Ca elements, the adsorption capacities of activated carbonized natural materials were lower than that of pure cellulose. N₂ adsorption measurement showed that the adsorbent had a large specific surface area as well as abundant micropores and 4-nm-sized mesopores. FTIR and surface potential results proved that carboxyl group was generated in the aerobic carbonization, and was deprotonated during ion exchange. This adsorbent consisted of C–C bonds as the building blocks and hydrophilic groups on the surface. XPS results demonstrated that the Pb 4f binding energies were reduced by 0.7–0.8 eV due to the interaction between Pb²⁺ and the activated adsorbent, indicating that the carboxylate groups bonded with Pb²⁺ through coordination interactions. Pseudo-second-order and Elovich kinetic models were well fitted with the adsorption processes on the pristine and activated carbonized adsorbents, indicative of chemisorption on heterogeneous surfaces. The Freundlich expression agreed well with the data measured, and the pristine and activated adsorbents had weak and strong affinities for Pb²⁺, respectively. The Pb²⁺ adsorption process was exothermic and spontaneous, and heat release determined the spontaneity. The adsorption capacity is attributed to the carboxylate groups and pores generated in the aerobic oxidation and ion exchange procedures.
Afficher plus [+] Moins [-]Effects of synthesis temperature on ε-MnO2 microstructures and performance: Selective adsorption of heavy metals and the mechanism onto (100) facet compared with (001)
2022
Yang, Yuebei | Wang, Yaozhong | Li, Xiaofei | Xue, Chao | Dang, Zhi | Zhang, Lijuan | Yi, Xiaoyun
The heavy-metal adsorbent ε-MnO₂ was produced through a simple, one-step oxidation-reduction reaction at three different synthesis temperatures (25 °C, 50 °C and 75 °C) and their morphology and chemical-physical properties were compared. Of the three materials, MnO₂-25 had the largest specific surface area and the highest surface hydroxyl concentration. Its optimal performance was demonstrated by batch adsorption experiments with Pb²⁺, Cd²⁺ and Cu²⁺. Of the three metals, Pb²⁺ was adsorbed best (339.15 mg/g), followed by Cd²⁺ (107.50 mg/g) and Cu²⁺ (86.30 mg/g). When all three metals were present, Pb²⁺ was still absorbed best but now more Cu²⁺ was adsorbed than Cd²⁺. In order to explore the mechanism for the inconsistent adsorption order of Cd²⁺ and Cu²⁺ in single and competitive adsorption, we combined experimental data with density functional theory (DFT) calculations to elucidate the distinct adsorption nature of MnO₂-25 towards these three metals. This revealed that the adsorption affinity of the (100) facet was superior to (001), and since the surface complexes were also more stable on (100), this facet was most likely determining the adsorption order for the single metals. When the metals were present in combination, Pb²⁺ preferentially occupied the active adsorption sites of (100), forcing Cu²⁺ to be adsorbed on the (001) facet where Cd²⁺ was only poorly bound. Thus, the adsorption behavior was affected by MnO₂-25 surface chemistry at a molecular scale. This study provides an in-depth understanding of the adsorption mechanisms of the heavy metals on this adsorbent and offers theoretical guidance for production of adsorbent with improved removal efficiency.
Afficher plus [+] Moins [-]Polyethylenimine-grafted nitrogen-doping magnetic biochar for efficient Cr(VI) decontamination: Insights into synthesis and adsorption mechanisms
2022
Qu, Jianhua | Zhang, Xiubo | Bi, Fuxuan | Wang, Siqi | Zhang, Xinmiao | Tao, Yue | Wang, Yifan | Zhao, Jiang | Zhang, Ying
Herein, polyethylenimine (PEI)-grafted nitrogen (N)-doping magnetic biochar (PEIMW@MNBCBM) was synthesized, and characterization results showed that the microwave-assisted PEI grafting and ball milling-assisted N doping introduced abundant amino, pyridine N and pyrrole N structures onto biochar, which possessed high affinity to Cr(VI) in the anion form. The as-prepared PEIMW@MNBCBM displayed pH-dependence adsorption performance and high tolerance to co-existing ions with maximum uptake capacity of Cr(VI) identified as 183.02 mg/g. Furthermore, PEIMW@MNBCBM could bind Cr(VI) through electrostatic attraction, complexion, precipitation, reduction and pore filling. Especially, effective reduction of Cr(VI) was ascribed to cooperative electron transfer of partial oxygen-containing functional groups, intramolecular pyridine/pyrrole N, protonated amino and Fe²⁺ on the adsorbent, while oxygen-containing and amino functional groups from N-doping biochar and PEI synergistically complexed Cr(III) via providing lone pair electrons to form coordinate bonds. Furthermore, the stable precipitation was formed between Fe³⁺ and Cr(III). Additionally, the Cr(VI) elimination efficiency could maintain 95.83% even after four adsorption-desorption cycles, suggesting PEIMW@MNBCBM as a high-performance adsorbent for Cr(VI) contaminated water remediation.
Afficher plus [+] Moins [-]Biochar composite derived from cellulase hydrolysis apple branch for quinolone antibiotics enhanced removal: Precursor pyrolysis performance, functional group introduction and adsorption mechanisms
2022
Zou, Mengyuan | Tian, Weijun | Chu, Meile | Gao, Huizi | Zhang, Dantong
In this study, magnetic biochar (MAB) and humic acid (HA)-coated magnetic biochar produced from apple branches without and after cellulase hydrolysis (HMAB and CHMAB, respectively) were prepared and tested as adsorbents of enrofloxacin (ENR) and moxifloxacin (MFX) in aqueous solution. Compared with MAB and HMAB, novel adsorbent CHMAB possessed a superior mesoporous structure, greater graphitization degree and abundant functional groups. When antibiotic solutions ranged from 2 to 20 mg L⁻¹, the theoretical maximum adsorption capacities of CHMAB for ENR and MFX were 48.3 and 61.5 mg g⁻¹ at 35 °C with adsorbent dosage of 0.4 g L⁻¹, respectively, while those of MAB and HMAB were 39.6 and 54.4 mg g⁻¹, and 44.7 and 59.0 mg g⁻¹, respectively. The pseudo-second-order kinetic model and Langmuir model presented a better fitting to the spontaneous and endothermic adsorption process. The maximum adsorption capacity of ENR and MFX onto CHMAB was achieved at initial pH values of 5 and 8, respectively. Additionally, the adsorption capacity of ENR and MFX decreased with increasing concentrations of K⁺ and Ca²⁺ (0.02–0.1 mol L⁻¹). Synergism between the pore-filling effect, π-π electron-donor-acceptor interactions, regular and negative charge-assisted H-bonding, surface complexation, electrostatic interactions and hydrophobic interactions may dominate the adsorption process. This study demonstrated that a novel magnetic biochar composite prepared through pyrolysis of agricultural waste lignocellulose hydrolyzed by cellulase in combination with HA coating was a promising adsorbent for eliminating quinolone antibiotics from aqueous media.
Afficher plus [+] Moins [-]Synergetic removal of thallium and antimony from wastewater with jacobsite-biochar-persulfate system
2022
Liu, Juan | Wei, Xudong | Ren, Shixing | Qi, Jianying | Cao, Jielong | Wang, Jin | Wan, Yuebing | Liu, Yanyi | Zhao, Min | Wang, Liang | Xiao, Tangfu
Both of thallium (Tl) and antimony (Sb) are toxic elements in the natural environment. Emerging Tl and Sb pollution in water has gradually gained public concerns globally. However, limited technologies are available for co-removal of Tl and Sb from wastewater. Herein, an novel system was successfully fabricated to enhance the synergetic removal of both Tl and Sb in wastewater. In this study, MnFe₂O₄-biochar composite (MFBC) facilely synthesized by a one-pot hydrothermal method was used as adsorbent and persulfate (PS) activator for simultaneously removing Tl and Sb from wastewater. The optimal reaction conditions for best removal efficiency of Tl and Sb simultaneously were obtained by using the response surface design combined with Box-Behnken Design (BBD) model. Results unveiled that the average removal rates of Tl and Sb can achieve 98.33% and 89.14%, respectively under the optimal reaction conditions. Electron Spin Resonance (ESR), and radical quenching experiments showed that OH• and SO₄•– play a critical role in the removal of Tl–Sb compound pollution. Via using different characterization, it is revealed that the mechanism of removing Tl–Sb containing wastewater by MFBC-1.4/PS system is oxidation, adsorption, complexation and ion exchange. All these results indicate that MFBC-1.4/PS technology is prospective in highly effective removal of Tl and Sb from wastewater simultaneously.
Afficher plus [+] Moins [-]Poly-NIPAM/Fe3O4/multiwalled carbon nanotube nanocomposites for kerosene removal from water
2022
Abdullah, Thamer Adnan | Juzsakova, Tatjána | Le, Phuoc-Cuong | Kułacz, Karol | Salman, Ali D. | Rasheed, Rashed T. | Mallah, Muhammad Ali | Varga, Béla | Mansoor, Hadeel | Mako, Eva | Zsirka, Balázs | Nadda, Ashok Kumar | Nguyen, X Cuong | Nguyen, D Duc
Multiwalled carbon nanotubes (MWCNTs) were oxidized using a mixture of H₂SO₄ and HNO₃, and the oxidized MWCNTS were decorated with magnetite (Fe₃O₄). Finally, poly-N-isopropyl acrylamide-co-butyl acrylate (P-NIPAM) was added to obtain P-NIPAM/Fe/MWCNT nanocomposites. The nanosorbents were characterized by various techniques, including X-ray diffraction, transmission electron microscopy, scanning electron microscopy, thermogravimetric analysis, and Brunauer–Emmett–Teller analysis. The P-NIPAM/Fe/MWCNT nanocomposites exhibited increased surface hydrophobicity. Owing to their higher adsorption capacity, their kerosene removal efficiency was 95%; by contrast, the as-prepared, oxidized, and magnetite-decorated MWCNTs had removal efficiencies of 45%, 55%, and 68%, respectively. The P-NIPAM/Fe/MWCNT nanocomposites exhibited a sorbent capacity of 8.1 g/g for kerosene removal from water. The highest kerosene removal efficiency from water was obtained at a process time of 45 min, sorbent dose of 0.005 g, solution temperature of 40 °C, and pH 3.5. The P-NIPAM/Fe/MWCNTs showed excellent stability after four cycles of kerosene removal from water followed by regeneration. The reason may be the increase in the positive charge of the polymer at pH 3.5 and the increased adsorption affinity of the adsorbent toward the kerosene contaminant. The pseudo second-order model was found to be the most suitable model for studying the kinetics of the adsorption reaction.
Afficher plus [+] Moins [-]Enhancing Cd(II) adsorption on rice straw biochar by modification of iron and manganese oxides
2022
Tan, Wen-Tao | Zhou, Hang | Tang, Shang-Feng | Zeng, Peng | Gu, Jiao-Feng | Liao, Bo-Han
Metal oxide-modified biochar showed excellent adsorption performance in wastewater treatment. Iron nitrate and potassium permanganate were oxidative modifiers through which oxygen-containing groups and iron–manganese oxides could be introduced into biochar. In this study, iron–manganese (Fe–Mn) oxide-modified biochar (BC-FM) was synthesized using rice straw biochar, and the adsorption process, removal effect, and the mechanism of cadmium (Cd) adsorption on BC-FM in wastewater treatment were explored through batch adsorption experiments and characterization (SEM, BET, FTIR, XRD, and XPS). Adsorption kinetics showed that the maximum adsorption capacity of BC-FM for Cd(II) was 120.77 mg/g at 298 K, which was approximately 1.5–10 times the amount of adsorption capacity for Cd(II) by potassium-modified or manganese-modified biochar as mentioned in the literature. The Cd(II) adsorption of BC-FM was well fit by the pseudo-second-order adsorption and Langmuir models, and it was a spontaneous and endothermic process. Adsorption was mainly controlled via a chemical adsorption mechanism. Moreover, BC-FM could maintain a Cd removal rate of approximately 50% even when reused three times. Cd(II) capture by BC-FM was facilitated by coprecipitation, surface complexation, electrostatic attraction, and cation-π interaction. Additionally, the loaded Fe–Mn oxides also played an important role in the removal of Cd(II) by redox reaction and ion exchange in BC-FM. The results suggested that BC-FM could be used as an efficient adsorbent for treating Cd-contaminated wastewater.
Afficher plus [+] Moins [-]Fast arsenate As(V) adsorption and removal from water using aluminium Al(III) fixed on Kapok fibres
2022
Yeo, Kanfolo Franck Herve | Dong, Yingying | Yang, Ye | Li, Chaokun | Wu, Kun | Zhang, Hui | Chen, Zhiwen | Atse, Eilohm Babotsa | Yang, Lan | Wang, Wendong
Arsenic (As) is among the most dangerous metalloids and is harmful to human wellbeing. In this laboratory study, Al(III)-modified kapok fibres (Al-Kapok) were used to remove As(V) from water. The sorbent was characterised using Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM) combined with energy-dispersive X-ray spectroscopy (EDX). Batch experiments were performed to observe the performance of Al-Kapok in the removal of As(V) and to examine the effects of pH, temperature, adsorbent dose, and coexisting ions on the adsorption process. The surface of the sorbent changed after aluminium modification, and the results of the batch experiments showed that the adsorption of As(V) occurred mainly via endothermic-spontaneous chemisorption at the solution and solid interface of Al-Kapok. The As(V) removal efficiency was approximately 76%–84%, and it was slightly affected at pH levels below 8.0. Further study showed that the maximum adsorption capacity of Al-Kapok for As(V) was 118 μg/g at 30 °C and pH 6, and notable adverse effects were caused by the presence of SO42−and PO43−. It was also found that the boundary layer and film diffusion contributed more to As(V) adsorption. After five adsorption/desorption cycles, regeneration recovered approximately 92% of the adsorption capacity of Al-Kapok used. Overall, Al-Kapok appears to be a suitable adsorbent material for the purification of As-contaminated water.
Afficher plus [+] Moins [-]Chemical aging of hydrochar improves the Cd2+ adsorption capacity from aqueous solution
2021
Li, Detian | Cui, Hongbiao | Cheng, Yueqin | Xue, Lihong | Wang, Bingyu | He, Huayong | Hua, Yun | Chu, Qingnan | Feng, Yanfang | Yang, Linzhang
Hydrochar (HC) serves as a promising adsorbent to remove the cadmium from aqueous solution due to porous structure. The chemical aging method is an efficient and easy-operated approach to improve the adsorption capacity of HC. In this study, four chemical aging hydrochars (CAHCs) were obtained by using nitric acid (HNO₃) with mass fractions of 5% (N5-HC), 10% (N10-HC), and 15% (N15-HC) to age the pristine HC (N0-HC) and remove the Cd²⁺ from the aqueous solution. The results displayed that the N15-HC adsorption capacity was 19.99 mg g⁻¹ (initial Cd²⁺ concentration was 50 mg L⁻¹), which increased by 7.4 folds compared to N0-HC. After chemical aging, the specific surface area and oxygen-containing functional groups of CAHCs were increased, which contributed to combination with Cd²⁺ by physical adsorption and surface complexation. Moreover, ion exchange also occurred during the adsorption process of Cd²⁺. These findings have important implications for wastewater treatment to transform the forestry waste into a valuable adsorbent for Cd²⁺ removal from water.
Afficher plus [+] Moins [-]