Affiner votre recherche
Résultats 1-10 de 23
Assessment of the presence of metals and quality of water used for irrigation in Kwara State, Nigeria
2017
Aliyu, Taiye | Balogun, Olusegun | Namani, Chineye | Olatinwo, Lateefat | Aliyu, Abubakar
In Nigeria irrigated agriculture is an important tool for economic growth, food security, and poverty reduction during dry periods of rain-fed agriculture. The concentration and composition of dissolved constituents in water determines its quality for irrigation use. Water quality studies strongly suggest that agriculture is a leading source of water quality problems, due to pesticides and other agro-inputs, widely used by farmers to improve agricultural productivity. Poor quality irrigation water would therefore obviously affect soil quality and crop productivity. This study was carried out in 2015 to assess the presence of metals and physical properties of water, used for irrigation in Kwara state, Nigeria. Samples were randomly collected from thirty irrigation sources in three senatorial zones of Kwara State. The samples were analyzed for the presence of metals and water quality parameters, using standard procedures. Results showed that the highest concentration of Sulphate (7.0mg/L), Nitrate (8.9mg/L), Sodium (31.6mg/L), Calcium (3.1mg/L), and Magnesium (0.7) ions were within acceptable limits. The Sodium Adsorption Ratio, an indicator for water suitability in agricultural irrigation as well as a standard diagnostic parameter for the sodicity hazard of a soil, was significantly the highest (22.7) in Kwara North. Results of the study point to the need for an effective irrigation water quality assessment to curb nonpoint source pollution that could be caused by improper use of chemicals and pesticides by farmers.
Afficher plus [+] Moins [-]RECOTOX, a French initiative in ecotoxicology-toxicology to monitor, understand and mitigate the ecotoxicological impacts of pollutants in socioagroecosystems
2018
Mougin, Christian | Gouy, Véronique | Bretagnolle, Vincent | Berthou, Julie | Andrieux, Patrick | Ansart, Patrick | Benoit, Marc | Coeurdassier, Michael | Comte, Irina | Dagès, Cécile | Denaix, Laurence | Dousset, Sylvie | Ducreux, Laure | Gaba, Sabrina | Gilbert, Daniel | Imfeld, Gwenaël | Liger, Lucie | Molenat, Jérôme | Payraudeau, Sylvain | Samouëlian, Anatja | Schott, Céline | Tallec, Gaëlle | Vivien, Emma | Voltz, Marc | Ecologie fonctionnelle et écotoxicologie des agroécosystèmes (ECOSYS) ; Institut National de la Recherche Agronomique (INRA)-AgroParisTech | RiverLy (UR Riverly) ; Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA) | Centre d'Études Biologiques de Chizé - UMR 7372 (CEBC) ; Institut National de la Recherche Agronomique (INRA)-La Rochelle Université (ULR)-Centre National de la Recherche Scientifique (CNRS) | Agrosystèmes tropicaux (ASTRO) ; Institut National de la Recherche Agronomique (INRA) | Hydrosystèmes continentaux anthropisés : ressources, risques, restauration (UR HYCAR) ; Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA) | Agro-Systèmes Territoires Ressources Mirecourt (ASTER Mirecourt) ; Institut National de la Recherche Agronomique (INRA) | Laboratoire Chrono-environnement (UMR 6249) (LCE) ; Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC) ; Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC) | Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad) | Laboratoire d'étude des Interactions Sol - Agrosystème - Hydrosystème (UMR LISAH) ; Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro) | Interactions Sol Plante Atmosphère (UMR ISPA) ; Institut National de la Recherche Agronomique (INRA)-Ecole Nationale Supérieure des Sciences Agronomiques de Bordeaux-Aquitaine (Bordeaux Sciences Agro) | Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC) ; Institut Ecologie et Environnement (INEE) ; Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Terre et Environnement de Lorraine (OTELo) ; Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS) | Bureau de Recherches Géologiques et Minières (BRGM) (BRGM) | Laboratoire de Biologie et Ecophysiologie ; Université de Franche-Comté (UFC) ; Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC) | Laboratoire d'Hydrologie et de Géochimie de Strasbourg (LHyGeS) ; Ecole et Observatoire des Sciences de la Terre (EOST) ; Université de Strasbourg (UNISTRA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-École Nationale du Génie de l'Eau et de l'Environnement de Strasbourg (ENGEES)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
[Departement_IRSTEA]Eaux [TR1_IRSTEA]ARCEAU [ADD1_IRSTEA]Hydrosystèmes et risques naturels | International audience | RECOTOX is a cross-cutting initiative promoting an integrated research to respond to the challenges of monitoring, understanding, and mitigating environmental and health impacts of pesticides in agroecosystems. The added value of RECOTOX is to develop a common culture around spatial ecotoxicology including the whole chain of pressure-exposure-impact, while strengthening an integrated network of in natura specifically equipped sites. In particular, it promotes transversal approaches at relevant socioecological system scales, to capitalize knowledge, expertise, and ongoing research in ecotoxicology and, to a lesser extent, environmental toxicology. Thus, it will open existing research infrastructures in environmental sciences to research programs in ecotoxicology of pesticides.
Afficher plus [+] Moins [-]RECOTOX, a French initiative in ecotoxicology-toxicology to monitor, understand and mitigate the ecotoxicological impacts of pollutants in socioagroecosystems
2018
Mougin, Christian | Gouy, Véronique | Bretagnolle, Vincent | Berthou, Julie | Andrieux, Patrick | Ansart, Patrick | Benoit, Marc | Coeurdassier, Michael | Comte, Irina | Dagès, Cécile | Denaix, Laurence | Dousset, Sylvie | Ducreux, Laure | Gaba, Sabrina | Gilbert, Daniel | Imfeld, Gwenaël | Liger, Lucie | Molenat, Jérôme | Payraudeau, Sylvain | Samouëlian, Anatja | Schott, Céline | Tallec, Gaëlle | Vivien, Emma | Voltz, Marc | Ecologie fonctionnelle et écotoxicologie des agroécosystèmes (ECOSYS) ; Institut National de la Recherche Agronomique (INRA)-AgroParisTech | RiverLy - Fonctionnement des hydrosystèmes ; Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA) | Centre d'Études Biologiques de Chizé - UMR 7372 (CEBC) ; Institut National de la Recherche Agronomique (INRA)-La Rochelle Université (ULR)-Centre National de la Recherche Scientifique (CNRS) | Agrosystèmes tropicaux (ASTRO) ; Institut National de la Recherche Agronomique (INRA) | Hydrosystèmes continentaux anthropisés : ressources, risques, restauration (UR HYCAR) ; Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA) | Agro-Systèmes Territoires Ressources Mirecourt (ASTER Mirecourt) ; Institut National de la Recherche Agronomique (INRA) | Laboratoire Chrono-environnement (UMR 6249) (LCE) ; Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC) ; Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC) | Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad) | Laboratoire d'étude des Interactions Sol - Agrosystème - Hydrosystème (UMR LISAH) ; Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro) | Interactions Sol Plante Atmosphère (UMR ISPA) ; Institut National de la Recherche Agronomique (INRA)-Ecole Nationale Supérieure des Sciences Agronomiques de Bordeaux-Aquitaine (Bordeaux Sciences Agro) | Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC) ; Institut Ecologie et Environnement - CNRS Ecologie et Environnement (INEE-CNRS) ; Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Terre et Environnement de Lorraine (OTELo) ; Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS) | Bureau de Recherches Géologiques et Minières (BRGM) | Laboratoire de Biologie et Ecophysiologie ; Université de Franche-Comté (UFC) ; Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC) | Laboratoire d'Hydrologie et de Géochimie de Strasbourg (LHyGeS) ; Ecole et Observatoire des Sciences de la Terre (EOST) ; Université de Strasbourg (UNISTRA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-École Nationale du Génie de l'Eau et de l'Environnement de Strasbourg (ENGEES)-Université de Strasbourg (UNISTRA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
[Departement_IRSTEA]Eaux [TR1_IRSTEA]ARCEAU [ADD1_IRSTEA]Hydrosystèmes et risques naturels | International audience | RECOTOX is a cross-cutting initiative promoting an integrated research to respond to the challenges of monitoring, understanding, and mitigating environmental and health impacts of pesticides in agroecosystems. The added value of RECOTOX is to develop a common culture around spatial ecotoxicology including the whole chain of pressure-exposure-impact, while strengthening an integrated network of in natura specifically equipped sites. In particular, it promotes transversal approaches at relevant socioecological system scales, to capitalize knowledge, expertise, and ongoing research in ecotoxicology and, to a lesser extent, environmental toxicology. Thus, it will open existing research infrastructures in environmental sciences to research programs in ecotoxicology of pesticides.
Afficher plus [+] Moins [-]Simulating changes in cropping practises in conventional and glyphosate-tolerant maize. I. Effects on weeds
2017
Colbach, Nathalie | Fernier, Alice | Le Corre, Valérie | Messean, Antoine | Darmency, Henri | Agroécologie [Dijon] ; Institut National de la Recherche Agronomique (INRA)-Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Université Bourgogne Franche-Comté [COMUE] (UBFC) | Unité Impacts Ecologiques des Innovations en Production Végétale (ECO-INNOV) ; Institut National de la Recherche Agronomique (INRA)
EASPEGESTADSUPDATINRACT1EJ2 INRA | Herbicide-tolerant (HT) crops such as those tolerant to glyphosate simplify weed management and make it more efficient, at least at short-term. Overreliance on the same herbicide though leads to the spread of resistant weeds. Here, the objective was to evaluate, with simulations, the impact on the advent of glyphosate resistance in weeds of modifications in agricultural practises resulting from introducing HT maize into cropping systems. First, we included a single-gene herbicide resistance submodel in the existing multispecific FLORSYS model. Then, we (1) simulated current conventional and probable HT cropping systems in two European regions, Aquitaine and Catalonia, (2) compared these systems in terms of glyphosate resistance, (3) identified pertinent cultural practises influencing glyphosate resistance, and (4) investigated correlations between cultural practises and species traits, using RLQ analyses. The simulation study showed that, during the analysed 28years, (1) glyphosate spraying only results in glyphosate resistance in weeds when combined with other cultural factors favouring weed infestation, particularly no till; (2) pre-sowing glyphosate applications select more for herbicide resistance than post-sowing applications on HT crops; and (3) glyphosate spraying selects more for species traits avoiding exposure to the herbicide (e.g. delayed early growth, small leaf area) or compensating for fitness costs (e.g. high harvest index) than for actual resistance to glyphosate, (4) actual resistance is most frequent in species that do not avoid glyphosate, either via plant size or timing, and/or in less competitive species, (5) in case of efficient weed control measures, actual resistance proliferates best in outcrossing species. An advice table was built, with the quantitative, synthetic ranking of the crop management effects in terms of glyphosate-resistance management, identifying the optimal choices for each management technique.
Afficher plus [+] Moins [-]Microplastic pollution in vegetable farmlands of suburb Wuhan, central China
2020
Chen, Yuling | Leng, Yifei | Liu, Xiaoning | Wang, Jun
Microplastic pollution has become an emergency issue in the global environment. However, little is known about the occurrence and distribution of microplastics in agroecological system. In this study, we investigated the pollution of microplastics in vegetable farmlands in suburb of Wuhan, central China. Results showed that the abundance of microplastics ranged from 320 to 12,560 items/kgdw. Microplastic pollution adjacent to the suburban roads was about 1.8 times as serious as that in the residential areas. Microplastics with size less than 0.2 mm were dominated, reaching 70% in total. The main types of microplastics were fibers and microbeads. Moreover, polyamide (32.5%) and polypropylene (28.8%) were the main types of polymer. This study proclaims the occurrence and characteristics of microplastic pollution in typical farmland soils of suburb land. It may provide significant basis for subsequent research about microplastics contaminant in the terrestrial ecosystem.
Afficher plus [+] Moins [-]Does agro-ecological efficiency contribute to poverty alleviation? An empirical study based on panel data regression
2022
Liu, Yue | Cheng, Xin
Worldwide degradation of the ecological environment could be the cause of poverty. The poverty-stricken areas may face the dilemma of a “vicious circle of poverty.” The complex ecological conditions have intertwined with poverty alleviation, which makes the demand for ecological poverty alleviation particularly prominent in these areas. However, the research on the relationship between agro-ecological efficiency and poverty are limited. It is far from clear what is the impact of the agro-ecological efficiency on poverty. To explore the impact of agro-ecological efficiency on poverty reduction, we adopt the panel data model based on cross-correlation and regression coefficient, using the data from 25 counties/districts in the Three Gorges Reservoir Region (TGRR) from 2006 to 2017. The results show that (1) there is significant heterogeneity in agro-ecological efficiency in the TGRR, and the agro-ecological efficiency in the middle area is significantly lower than that of the head and tail areas of the TGRR; (2) the improvement of regional agro-ecological efficiency could accelerate the alleviation of poverty; and (3) the widening of urban–rural income disparity is not conducive to poverty alleviation and eradication. This study would provide basis for further policy recommendations aimed at improving agro-ecological efficiency and alleviating poverty.
Afficher plus [+] Moins [-]Advantages and limits to copper phytoextraction in vineyards
2022
Cornu, Jean-Yves | Waterlot, Christophe | Lebeau, Thierry
Copper (Cu) contamination of soils may alter the functioning and sustainability of vineyard ecosystems. Cultivating Cu-extracting plants in vineyard inter-rows, or phytoextraction, is one possible way currently under consideration in agroecology to reduce Cu contamination of vineyard topsoils. This option is rarely used, mainly because Cu phytoextraction yields are too low to significantly reduce contamination due to the relatively “low” phytoavailability of Cu in the soil (compared to other trace metals) and its preferential accumulation in the roots of most extracting plants. This article describes the main practices and associated constraints that could theoretically be used to maximize Cu phytoextraction at field scale, including the use of Cu-accumulating plants grown (i) with acidifying plants (e.g., leguminous plants), and/or (ii) in the presence of acidifying fertilizers (ammonium, elemental sulfur), or (iii) with soluble “biochelators” added to the soil such as natural humic substances or metabolites produced by rhizospheric bacteria such as siderophores, in the inter-rows. This discussion article also provides an overview of the possible ways to exploit Cu-enriched biomass, notably through ecocatalysis or biofortification of animal feed.
Afficher plus [+] Moins [-]A bibliometric analysis of sustainable agriculture: based on the Web of Science (WOS) platform
2022
Sarkar, Apurbo | Wang, Hongyu | Rahman, Airin | Memon, Waqar Hussain | Qian, Lu
The global trends of sustainable agriculture (SA) have expanded dramatically through many scholarly studies in this area. Many literary works have focused on several aspects of sustainable agriculture (SA), such as the effectiveness of pesticide management, impacts on cultivation and enhancement, quantifying with soil, water, and air, agro-ecological activities, ecological aspects, and other areas of focus. The review offers a structured bibliometric and network evaluation that will profoundly observe the recent trends of SA, which other studies in this field have not comprehensively analyzed before. The study’s prime objectives are to investigate the progress, trends and themes, and provide a comprehensive mapping of the field of sustainable agriculture. The study utilizes the Web of Science core collection database to search, filter, and extract the published article from 1992–2020. The review commences by exploring over 3000 journal articles, those then filtered into some well-recognized matrix of impacts and published by impactful journals, institutions, and authors. The results indicate a stable growth in publications since 2006, with a sharp improvement from 2010. Thematic assessment of key concepts by exploring the abstract discovered a robust emphasis on quantitative resource associations within a strong subjective focus with farm capacities and inner-sectorial dominations. We reveal how the outcome may assist the sectors to facilitate better understandings and comprehend the challenging transitions based on brainstorming to action formulation.
Afficher plus [+] Moins [-]Phytoparasitic nematodes of organic vegetables in the Argan Biosphere of Souss-Massa (Southern Morocco)
2021
Filali Alaoui, Ilyass | Ait Hamza, Mohamed | Benjlil, Hinde | Idhmida, Amine | Braimi, Amina | Mzough, Elmahdi | Hallouti, Ayoub | Basaid, Khadija | Furze, James Nicholas | Zasada, Inga A | Paulitz, Timothy | Ferji, Zahra | El Mousadik, Abdelhamid | Mayad, El Hassan
Agroecological productivity of the Arganeraie Biosphere Reserve of Morocco is limited by the wide spread and dynamics of plant parasitic nematodes (PPN). Ecological studies of nematode communities are required to develop effective biological management of these bioagressors as conventional control methods of PPN are inadequate and have persistent harmful effects. Fifty-nine organic vegetable soils in Souss-Massa were nematologically sampled, and assessment of taxonomic proliferation was made in relation to host species, geographical origin, and climatic and microclimatic factors. Twenty-four nematode genera were identified as obligate and facultative plant feeders. Taxonomic diversity increased from Chtouka to Taroudant and Tiznit provinces. Soil texture, organic matter, pH, nitrogen, zinc, magnesium, copper, altitude, and humidity and temperature were seen to effect driving roles in the abundance, distribution, and community structures of nematodes. The most prevalent taxa posing a high risk to organic agriculture of Souss Massa were needle nematodes (Longidorus spp.) and root-knot nematodes (Meloidogyne spp.). Edaphic and climatic variables effected nematode populations greatly. A combination of biological treatments and appropriate agroecological practices restricting important economic PPN growth and enhancing soil quality are required to achieve sustainable management in the area.
Afficher plus [+] Moins [-]Nexus between agro-ecological efficiency and carbon emission transfer: evidence from China [Erratum: August 2021, v.28(32), p.44581]
2021
Akbar, Usman | Li, Quan-Lin | Akmal, Muhammad Abdullah | Shakib, Mohammed | Iqbal, Wasim
The economy of China is growing rapidly. With this overwhelming growth, the country is experiencing a higher level of carbon emissions. Amid this backdrop, China is under immense pressure to reduce carbon emissions up to a sustainable level. This study adapted 31 provincial panel data from 2007 to 2017 using factor analysis system SBM-undesirable model to calculate the agro-ecological output of each province respectively and used a carbon transfer network impact analysis panel to calculate ecological performance impacts. Results show that (1) overall agro-ecological efficiency in China shows an upward trend but regional differences are evident. The efficiency in the eastern region is higher than that in the central and western regions but the extent of informatization in the central region is higher than that in the western region. (2) Informatization will significantly promote agro-ecological efficiency. (3) Changes in agricultural planting structure, agricultural value-added per capita, employment of human capital in the agricultural sector, and agricultural scale management are also important factors affecting agro-ecological growth. (4) China’s amount of carbon transfer is growing year by year, and energy-intensive areas and heavy industry bases are undertaking carbon transfer from the eastern coastal regions; (5) Jiangsu, Henan, and Hebei (Hubei) have the highest centers between 2007 and 2012; (6) inter-provincial carbon transmission is concentrated mainly in the metal smelting and rolling processing industries as well as in the coal, heat, and supply industries.
Afficher plus [+] Moins [-]