Affiner votre recherche
Résultats 1-5 de 5
Selection of low-cadmium and high-micronutrient wheat cultivars and exploration of the relationship between agronomic traits and grain cadmium
2022
Li, Shuangshuang | Huang, Xianmin | Liu, Na | Chen, Yihui | He, Huan | Cao, Xiaoyu | Dai, Jiulan
The cadmium (Cd) and micronutrient contents in grains were used as screening indicators through a pot experiment, and the hierarchical cluster analysis was used to select wheat cultivars with low Cd and high micronutrient contents. The potential human health risks caused by wheat intake and the relationship between the Cd concentration in wheat grains and 12 agronomic traits were also investigated using the risk assessment model and logistic equation fitting, respectively. Yannong-23, Zhongmmai-175, and Luyuan-502, the main wheat cultivars promoted in the Huang-Huai-Hai region of China, were screened for low Cd accumulation and high micronutrient. Health risk assessment results demonstrated that children showed a high noncarcinogenic risk and that adults posed a high carcinogenic risk. The results of the agronomic trait analysis showed that low-Cd accumulation wheat cultivars had high spikelet number and fresh and dry weights of root, stem, and leaf (p < 0.05). Logistic curve fitting results showed that among all agronomic traits, the root dry weight was the most suitable factor with remarkable goodness of fit and showed a significant negative correlation. The Cd concentration in wheat grains could be predicted by the logistic curve equation obtained by fitting this trait. Results provided theoretical support for the safe use of slightly to moderately contaminated farmland, formulation of health risk management policies for different populations, and breeding of high-quality wheat.
Afficher plus [+] Moins [-]Performance of Aeluropus lagopoides (mangrove grass) ecotypes, a potential turfgrass, under high saline conditions
2019
Zamin, Muhammad | Khattak, Abdul Mateen | Salim, Abdul Mohsin | Marcum, Kenneth B. | Shakūr, Muḥammad | Shah, Shahen | Jan, Ibadullah | Shah, Fahad
Climate change has become a real threat, and its impacts are being felt throughout the world. Temperature is considered one of the significant elements by the recent consequences of climate change and global warming, specially the salinity which is increased at higher temperature. Turfgrasses are adversely affected due to an increasing trend in salinity. The main aim of this investigation was to find out salt-tolerant ecotypes from native species of UAE to mitigate the salinity problem. Performance of a native grass, Aeluropus lagopoides, was investigated under high saline conditions during the year 2014 under the UAE climatic conditions. The experiment was planned under randomised complete block design (RCBD) with two factors and four replications. During the experiment, 50 ecotypes of Aeluropus lagopoides, alongside Paspalum vaginatum (as control), were tested at different salt levels, i.e. 0, 15, 30, 45, 60 and 75 dSm⁻¹. Significant differences were found among various ecotypes as well as salinity levels for different agronomic traits including green cover, canopy stiffness, leaf colour and salinity of leaf rinseates. Most of the ecotypes tolerated salinity up to 30 dSm⁻¹, maintaining the quality, but beyond this level the quality declined. However, some of the ecotypes survived under high salinity, even beyond sea level (75 dSm⁻¹). All the ecotypes, except RUA2, RUA3 and RUA1, showed better performance than P. vaginatum, the prevailing commercial turfgrass in the UAE. Based on their performance, the ecotypes RUDA7, FA5, RA3, RUDA2 and RA2 could be used for turf purposes under saline conditions.
Afficher plus [+] Moins [-]Effectiveness of rabbit manure biofertilizer in barley crop yield
2017
Islas-Valdez, Samira | Lucho-Constantino, Carlos A. | Beltrán-Hernández, Rosa I. | Gómez-Mercado, René | Vázquez-Rodríguez, Gabriela A. | Herrera, Juan M. | Jiménez-González, Angélica
The quality of biofertilizers is usually assessed only in terms of the amount of nutrients that they supply to the crops and their lack of viable pathogens and phytotoxicity. The goal of this study was to determine the effectiveness of a liquid biofertilizer obtained from rabbit manure in terms of presence of pathogens, phytotoxicity, and its effect on the grain yield and other agronomic traits of barley (Hordeum vulgare L.). Environmental effects of the biofertilizer were also evaluated by following its influence on selected soil parameters. We applied the biofertilizer at five combinations of doses and timings each and in two application modes (foliar or direct soil application) within a randomized complete block design with three replicates and using a chemical fertilizer as control. The agronomic traits evaluated were plant height, root length, dry weight, and number of leaves and stems at three growth stages: tillering, jointing, and flowering. The effectiveness of the biofertilizer was significantly modified by the mode of application, the growth stage of the crop, and the dose of biofertilizer applied. The results showed that the foliar application of the biofertilizer at the tillering stage produced the highest increase in grain yield (59.7 %, p < 0.10). The use of the biofertilizer caused significant changes in soil, particularly concerning pH, EC, Ca, Zn, Mg, and Mn. It is our view that the production and use of biofertilizers are a reliable alternative to deal with a solid waste problem while food security is increased.
Afficher plus [+] Moins [-]Seasonal and annual variations of metal uptake, bioaccumulation, and toxicity in Trifolium repens and Lolium perenne growing in a heavy metal-contaminated field
2009
Bidar, Géraldine | Pruvot, Christelle | Garçon, Guillaume | Verdin, Anthony | Shirali, Pirouz | Douay, Francis
Background, aim, and scope The reclamation of nonferrous metal-polluted soil by phytoremediation requires an overall and permanent plant cover. To select the most suitable plant species, it is necessary to study metal effects on plants over the time, thereby checking that metals remain stored in root systems and not transferred to aerial parts. In this purpose, the seasonal and annual variations of metal bioaccumulation, transfer, and phytotoxicity in Trifolium repens and Lolium perenne grown in a Cd-, Pb-, and Zn-contaminated soil were also studied. Materials and methods The experimental site was located near a closed smelter. In spring 2004, two areas were sown with T. repens and L. perenne, respectively. Thereafter, the samplings of plant roots and shoots and surrounding soils were realized in autumn 2004 and spring and autumn 2005. The soil agronomic characteristics, the Cd, Pb, and Zn concentrations in the surrounded soils and plant organs, as well as the oxidative alterations (superoxide dismutase [SOD], malondialdehyde [MDA], and 8-hydroxy-2'-deoxyguanosine [8-OHdG]) in plant organs were carried out. Results Whatever the sampling period, metal concentrations in soils and plants were higher than background values. Contrary to the soils, the fluctuations of metal concentrations were observed in plant organs over the time. Bioaccumulation and transfer factors confirmed that metals were preferentially accumulated in the roots as follows: Cd>Zn>Pb, and their transfer to shoots was limited. Foliar metal deposition was also observed. The results showed that there were seasonal and annual variations of metal accumulation in the two studied plant species. These variations differed according to the organs and followed nearly the same pattern for the two species. Oxidative alterations were observed in plant organs with regard to SOD antioxidant activities, MDA, and 8-OHdG concentrations. These alterations vary according to the temporal variations of metal concentrations. Discussion Metal concentrations in surrounded soils and plant organs showed the effective contamination by industrial dust emissions. Metals absorbed by plants were mainly stored in the roots. With regard to this storage, the plants seemed to limit the metal transfer to their aerial parts over the time, thereby indicating their availability for metal phytostabilization. Aerial deposition was another source of plant exposure to nonferrous metals. Despite the occurrence of metal-induced oxidative alterations in plant organs, both plant species seemed to tolerate a high metal concentration in soils. Conclusions Taken together, these results indicated that T. repens and L. perenne were able to form a plant cover on highly Cd-, Pb-, and Zn-polluted soils, to limit the metal transfer to their aerial parts and were relatively metal-tolerant. All these characteristics made them suitable for phytostabilization on metal-contaminated soils. These findings also highlighted the necessity to take into account seasonal and annual variations for a future phytomanagement. Recommendations and perspectives In this work, the behavior of plant species grown in metal-polluted soil has been studied during 2 years. Obviously, this time is too short to ensure that metals remain accumulated in the root system and few are transferred in aerial parts over the time. It is why regular monitoring should be achieved during more than a decade after the settlement of the plant cover. This work will be completed by the study of the T. repens and L. perenne effects on mobility of metals in order to evaluate the quantities of pollutants which could be absorbed by the biota and transferred to groundwater. Bioaccessibility tests could be also realized on polluted soils in order to evaluate the phytostabilization impacts on the exposition risks for humans.
Afficher plus [+] Moins [-]Risk assessment of maize damage by wireworms (Coleoptera: Elateridae) as the first step in implementing IPM and in reducing the environmental impact of soil insecticides
2017
Furlan, L. | Contiero, B. | Chiarini, F. | Colauzzi, M. | Sartori, E. | Benvegnù, I. | Fracasso, F. | Giandon, P.
A survey of maize fields was conducted in northeast Italy from 1986 to 2014, resulting in a dataset of 1296 records including information on wireworm damage to maize, plant-attacking species, agronomic characteristics, landscape and climate. Three wireworm species, Agriotes brevis Candeze, A. sordidus Illiger and A. ustulatus Schäller, were identified as the dominant pest species in maize fields. Over the 29-year period surveyed, no yield reduction was observed when wireworm plant damage was below 15 % of the stand. A preliminary univariate analysis of risk assessment was applied to identify the main factors influencing the occurrence of damage. A multifactorial model was then applied by using the significant factors identified. This model allowed the research to highlight the strongest factors and to analyse how the main factors together influenced damage risk. The strongest factors were: A. brevis as prevalent damaging species, soil organic matter content >5 %, rotation including meadows and/or double crops, A. sordidus as prevalent damaging species, and surrounding landscape mainly meadows, uncultivated grass and double crops. The multifactorial model also showed how the simultaneous occurrence of two or more of the aforementioned risk factors can conspicuously increase the risk of wireworm damage to maize crops, while the probability of damage to a field with no-risk factors is always low (<1 %). These results make it possible to draw risk maps to identify low-risk and high-risk areas, a first step in implementing bespoke IPM procedures in an attempt to reduce the impact of soil insecticides significantly.
Afficher plus [+] Moins [-]