Affiner votre recherche
Résultats 1-4 de 4
Phytoremediation potential of heavy metals by two native pasture plants (Eucalyptus grandis and ailanthus altissima) assisted with AMF and fibrous minerals in contaminated mining regions
2017
Abbaslou, Hakime | Bakhtiari, Somayeh
The current study assesses the effect of fibrous clay minerals’ amendments and arbuscular mycorrhiza incubation on heavy metal uptake and translocation in Eucalyptus grandis and Ailanthus altissima plants. For doing so, Eucalyptus and ailanthus trees have been grown in a soil sample, contaminated with heavy metal iron ore mining and collected from southern Iran. The area under study is arid, with the majority of trees being ailanthus and eucalyptus. Amounts of Cd, Pb, Zn, Cu, and Mn have initially been at toxic levels which declined after cultivation. Fibrous clay minerals have been added to soils as a natural adsorbent to adsorb heavy metals like Pb, Cd, Zn, and Mn. Accumulation of the elements in the roots and shoots has been in the following order: Cu>Zn>Mn>Cd>Pb>Fe. The organ metal concentrations have not statistically translocated from roots to shoots of plants, except for Zn and Cu whose concentrations have been significantly higher in roots. Eucalyptus is well capable of extracting elements from contaminated soils, compared to ailanthus, particularly in case of Cu and Cd. The percentage of mycorrhizal colonization proves to be more in pots with ailanthus plants grown in contaminated soil, suggesting enhanced effect of high metal concentrations on plant infection by G. mosseae. AMF assists soil remediation by enhancing the growth and retention of toxic elements by ailanthus, while no substantial change has been observed between inoculated and non-inoculated eucalyptus plants by AFM, regarding translocation of elements to plants. The possibility of increasing metal accumulation in roots is interesting for phytoremediation purposes, since most high-producing biomass plants, such as eucalyptus, retain heavy metals in roots.
Afficher plus [+] Moins [-]Physiological responses of Ailanthus altissima Desf. young plants in an area with high ozone pollution levels
2002
Bussotti, F. (Universita di Firenze, Firenze (Italy). Dipartimento di Biologia Vegetale) | Desotgiu, R. | Grossoni, P. | Gravanio, E. | Rodriguez, R.M.
Ailanthus altissimia Desf. is a non-native species spread throughout the Southern Europe as invasive plant. It demonstrated to be very sensitive to ozone and ozone-polluted environment, develops brownish stipples on the upper leaf surface. In the 2001 summer 12 young plants were placed in a site near the city of Florence (Italy), where high levels of ozone were experienced. Six of them were regularly watered and six were watered only when the wilting of their leaves was evident. Regular assessments were done during the experiment. They concerned growth, production of new leaves, dead and shedding of old leaves, visible symptoms of damage, stomatal conductance and CO2 uptake, chlorophyll fluorescence. The results suggest that the sensitivity to ozone of watered plants is connected to their higher growth ratio and stomatal conductance. Ozone plays a more important role than drought in producing foliar stress conditions
Afficher plus [+] Moins [-]Evidence of widespread ozone-induced visible injury on plants in Beijing, China
2014
Feng, Zhaozhong | Sun, Jingsong | Wan, Wuxing | Hu, Enzhu | Calatayud, Vicent
Despite the high ozone levels measured in China, and in Beijing in particular, reports of ozone-induced visible injury in vegetation are very scarce. Visible injury was investigated on July and August 2013 in the main parks, forest and agricultural areas of Beijing. Ozone injury was widespread in the area, being observed in 28 different species. Symptoms were more frequent in rural areas and mountains from northern Beijing, downwind from the city, and less frequent in city gardens. Among crops, injury to different types of beans (genera Phaseolus, Canavalia and Vigna) was common, and it was also observed in watermelon, grape vine, and in gourds. Native species such as ailanthus, several pines and ash species were also symptomatic. The black locust, the rose of Sharon and the Japanese morning glory were among the injured ornamental plants. Target species for broader bio-monitoring surveys in temperate China have been identified.
Afficher plus [+] Moins [-]A factor analysis of landscape metrics of particles deposited on leaf surface
2018
Lin, Lin | Chen, Guojian | Yan, Jingli | Tang, Rongli | Yuan, Xiu | Yin, Zhe | Zhang, Rui
Particulate matter in the airborne environment is one of the top environmental concerns, as well as reasons of deaths and diverse diseases. Urban green infrastructure can improve the air quality by mitigating particulate matters from airborne environment and provide high spatial monitoring of particles by means of leaf particles as indicators. Three common species in Beijing (ailanthus, ash, and willow) were chosen to represent three different leaf characteristics. Then, we analyzed the correlation relationship of the particle metrics at landscape, class, and patch levels and implemented the principal components analysis and factor analysis. Firstly, at landscape level, metrics are mostly correlated with each other and the correlation relationship of metrics of ailanthus and willow were stronger than that of ash, which has coarse-texture leaves without hair. At class level, most of the metrics were correlated and the correlation relationship of metrics of ailanthus, whose leaves have microgrooves without hair, was weaker than that of ash and willow. At patch level, judging from proximity, the distance between particles from the same range was smaller for particles with complicated shape. Secondly, particles from four ranges were analyzed separately. The shape complexity of particles decreased and increased as the area increased respectively for PM1 (diameter ≤ 1 μm) and large particles (diameter ≥ 10 μm). Two principle components were identified for landscape and class levels respectively. These results will be useful for the in-depth understanding of the particles deposited on the leaf surface.
Afficher plus [+] Moins [-]