Affiner votre recherche
Résultats 1-10 de 70
Microphytobenthos diversity and community structure across different micro-estuaries and micro-outlets: Effects of environmental variables on community structure Texte intégral
2020
Dalu, Tatenda | Magoro, Mandla L. | Naidoo, Lyndle S. | Wasserman, Ryan J. | Human, Lucienne RD. | Adams, Janine B. | Perissinotto, R. | Deyzel, Shaun HP. | Wooldridge, Tris | Whitfield, Alan K.
This study forms the first basic assessment of microphytobenthos (MPB) dynamics in micro-estuaries and micro-outlets in southern Africa. It examines MPB community responses to environmental variables and further investigates MPB composition qualitatively across different micro-estuaries and micro-outlets over four seasons in a warm temperate region of the subcontinent. Combinations of multivariate analyses were used to explore similarities and differences in MPB communities between systems. Human-induced catchment changes between microsystems ranged from no alteration (rating 0; mostly micro-outlets) to extreme modification (rating 5; mostly micro-estuaries). Two hundred and sixty-seven MPB taxa were identified within all the microsystems, with 247 and 230 MPB taxa being observed in the micro-estuaries and micro-outlets, respectively. The MPB communities differed slightly in terms of microsystem types and seasons, but no significant differences were observed. Multivariate analyses (i.e. Boosted Regression Trees, Canonical Correspondence Analysis) showed that water column variables were significant and important in structuring MPB communities, with soluble reactive phosphorus, sediment pH, turbidity, ammonium and temperature being documented as key drivers. The MPB community composition clearly reflected the influence of catchment anthropogenic activities on species composition and structure. Moderately modified catchments resulted in MPB community structure variation among water bodies in relationship to land use and salinity gradients. The study found that; (i) by virtue of their size, microsystems and their catchments are likely to be particularly vulnerable to anthropogenic pressures when compared to systems of larger size; (ii) a typical impacted state may reflect reduced environmental heterogeneity which, compared to larger systems, may be achieved over much shorter time periods (following a particular event) or under much less intensive impacts; and (iii) the response in terms of MPB structure may predictably reflect a concomitant change from a complex community dynamic (structure and spatio-temporal attributes) to one that approaches a homogeneous structure (poor spatial zonation, strong taxonomic dominance, low species diversity).
Afficher plus [+] Moins [-]New insights into concentrations, sources and transformations of NH3, NOx, SO2 and PM at a commercial manure-belt layer house Texte intégral
2020
Wang, Yue | Niu, Binglong | Ni, Ji-Qin | Xue, Wentao | Zhu, Zhiping | Li, Xinrong | Zou, Guoyuan
Pollutant gases and particulate matters (PM) from livestock facilities can affect the health of animals and farm workers and lead to great social environmental risks. This paper presents a comprehensive study on the characteristics of ammonia (NH₃), nitrogen oxides (NOₓ), sulfur dioxide (SO₂) and PM (including PM₂.₅ and PM₁₀) in a 100,000-bird manure-belt layer house in suburb Beijing for three typical seasons of summer, autumn and winter. Indoor air was sampled at an exhaust fan of the mechanically ventilated commercial house. The monitored indoor concentrations of NH₃, NOₓ, SO₂, PM₂.₅ and PM₁₀ were 3.7–5.0 mg m⁻³, 17–58 μg m⁻³, 0–11 μg m⁻³, 100–149 μg m⁻³ and 354–828 μg m⁻³, respectively. The indoor NH₃ concentrations were largely influenced by the manure removal frequency. The NOₓ and SO₂ were mainly sourced from the ambient air, and the NOₓ was also partly sourced from manure decomposition in summer. The indoor PM₂.₅ and PM₁₀ were largely sourced from the ambient air and the indoor manure, respectively. The abundant indoor NH₃ caused significantly higher NH₄⁺ concentration in the indoor PM₁₀ (7.98 ± 9.04 μg m⁻³) than that in the ambient PM₁₀ (3.48 ± 3.52 μg m⁻³). Secondary inorganic ions (SO₄²⁻, NO₃⁻ and NH₄⁺) totally contributed 5.7% and 14.6% to the indoor and ambient PM₂.₅, respectively; they contributed 2.8% and 8.9% to the indoor and ambient PM₁₀, respectively. Organic carbon was the main component of the PM and accounted for 26.6% and 41.5% of the indoor PM₂.₅ and PM₁₀, respectively. Heavy metal elements (Zn, Cu and Cr) were likely transported from feed to manure and finally accumulated in the PM. Given the high emission potential, the air pollutants from animal production suggested potential risks for human health.
Afficher plus [+] Moins [-]Nitrogen induced DOC and heavy metals leaching: Effects of nitrogen forms, deposition loads and liming Texte intégral
2020
Zia, Afia | van den Berg, Leon | Riaz, Muhammad | Arif, Muhammad | Zia, Dania | Khan, Shawana J. | Ahmad, Muhammad Nauman | Attaullah, | Ahsmore, Mike
Atmospheric nitrogen (N) deposition is believed to accelerate dissolved organic carbon (DOC) production and could lead to increased heavy metal mobility into water resources. We sampled intact soil cores from the Isle of Skye with low background N deposition history and having Serpentine rock known for its higher heavy metal concentrations including zinc (Zn), copper (Cu), nickel (Ni) and lead (Pb). The effects of 16 (16kgN) and 32 kg N ha⁻¹ year⁻¹ (32kgN), and liming with 32kgN (32kgN+Lime) on soil solution chemistry and heavy metal mobilization were investigated over the 15-month study. Nitrogen in deposition load was added at five ammonium (NH₄⁺) to nitrate (NO₃⁻) ratios of 9:1, 5:1, 1:1, 1:5 and 1:9 along NO₃⁻dominance. We found significant effects of load on Cu and NH₄⁺/NO₃⁻ ratio on pH, DOC and Zn in soil solution. However, under lime and ratio experimental factors, liming significantly influenced pH, DOC, Cu and Pb, and NH₄⁺/NO₃⁻ ratio pH, DOC, Ni and Zn whereas interactions between lime and ratio was significant for Ni and Cu. pH and DOC increased with N load, liming and NO₃⁻ dominance, and both correlated significantly positively. Liming under NH₄⁺ dominance enhanced DOC production due to supply of base cations in lime. Mobilization of Cu, Ni and Pb was driven by DOC concentrations and, therefore, increased with load, liming and NO₃⁻ dominance in deposition. However, in contrast, low pH and high NH₄⁺ dominance was associated with Zn mobilization in soil solution. On the contrary, despite of some patterns, heavy metals in soil HNO₃ extracts were devoid of any load, lime and NH₄⁺/NO₃⁻ ratio effects. Our study suggests that the effects of N load and forms in deposition on sites with high accumulated loads of metals need to be better quantified through soil solution partitioning models.
Afficher plus [+] Moins [-]Effects of suspended mineral coal dust on the energetic physiology of the Caribbean scallop Argopecten nucleus (Born, 1778) Texte intégral
2020
Benitez-Polo, Z. | Velasco, L.A.
The effects of increasing concentrations of suspended mineral coal dust on the energetic physiology of the Caribbean scallop Argopecten nucleus were studied, at a concentration range that is environmentally relevant and representative of areas proximate to coal loading and shipping ports. Adult hatchery-produced animals were exposed to different concentrations of coal dust, i.e. 0, 2, 9 and 40 mg L⁻¹. At increasing concentrations of coal dust, the rates of filtration and pseudofeces production increased, while the rates of ingestion and absorption remained constant. The rates of oxygen consumption and ammonium excretion decreased, as well as the absorption efficiency and the scope for growth. Suspended coal dust particles, at concentrations higher than or equal to 2 mg L⁻¹, were ingested preferentially over microalgae by A. nucleus, causing reductions in its absorption capability, metabolism and in the amount of energy for growth and reproduction, thus generating physiological stress.
Afficher plus [+] Moins [-]Fossil fuel-related emissions were the major source of NH3 pollution in urban cities of northern China in the autumn of 2017 Texte intégral
2020
Zhang, Zhongyi | Zeng, Yang | Zheng, Nengjian | Luo, Li | Xiao, Hongwei | Xiao, Huayun
As the most important gas-phase alkaline species, atmospheric ammonia (NH3) contributes considerably to the formation and development of fine-mode particles (PM2.5), which affect air quality and environmental health. Recent satellite-based observations suggest that the North China Plain is the largest agricultural NH3 emission source in China. However, our isotopic approach shows that the surface NH3 in the intraregional urban environment of Beijing-Tianjin-Shijiazhuang is contributed primarily by combustion-related processes (i.e., coal combustion, NH3 slip, and vehicle exhaust). Specifically, the Batch fractionation model was used to describe the partitioning of gaseous NH3 into particles and to trace the near-ground atmospheric NH3 sources. With the development of haze pollution, the dynamics of δ15N-NH4+ were generally consistent with the fractionation model. The simulated initial δ15N-NH3 values ranged from −22.6‰ to −2.1‰, suggesting the dominance of combustion-related sources for urban NH3. These emission sources contributed significantly (92% on hazy days and 67% on clean days) to the total ambient NH3 in urban cities, as indicated by a Bayesian mixing model. Based on the Batch fractionation model, we concluded the following: 1) δ15N-NH4+ can be used to model the evolution of fine-mode aerosols and 2) combustion-related sources dominate the near-ground atmospheric NH3 in urban cities. These findings highlight the need for regulatory controls on gaseous NH3 emissions transported from local and surrounding industrial sources.
Afficher plus [+] Moins [-]Dynamics of coastal bacterial community average ribosomal RNA operon copy number reflect its response and sensitivity to ammonium and phosphate Texte intégral
2020
Dai, Tianjiao | Zhao, Yanan | Ning, Daliang | Huang, Bei | Mu, Qinglin | Yang, Yunfeng | Wen, Donghui
The nutrient-rich effluent from wastewater treatment plants (WWTPs) constitutes a significant disturbance to coastal microbial communities, which in turn affect ecosystem functioning. However, little is known about how such disturbance could affect the community’s stability, an important knowledge gap for predicting community response to future disturbances. Here, we examined dynamics of coastal sediment microbial communities with and without a history of WWTP’s disturbances (named H1 and H0 hereafter) after simulated nutrient input loading at the low level (5 mg L⁻¹ NH₄⁺-N and 0.5 mg L⁻¹ PO₄³⁻-P) or high level (50 mg L⁻¹ NH₄⁺-N and 5.0 mg L⁻¹ PO₄³⁻-P) for 28 days. H0 community was highly sensitive to both low and high nutrient loading, showing a faster community turnover than H1 community. In contrast, H1 community was more efficient in nutrient removal. To explain it, we found that H1 community constituted more abundant and diversified r-strategists, known to be copiotrophic and fast in growth and reproduction, than H0 community. As nutrient was gradually consumed, both communities showed a succession of decreasing r-strategists. Accordingly, there was a decrease in community average ribosomal RNA operon (rrn) copy number, a recently established functional trait of r-strategists. Remarkably, the average rrn copy number of H0 communities was strongly correlated with NH₄⁺-N (R² = 0.515, P = 0.009 for low nutrient loading; R² = 0.749, P = 0.001 for high nutrient loading) and PO₄³⁻-P (R² = 0.378, P = 0.034 for low nutrient loading; R² = 0.772, P = 0.001 for high nutrient loading) concentrations, while that of H1 communities was only correlated with NH₄⁺-N at high nutrient loading (R² = 0.864, P = 0.001). Our results reveal the potential of using rrn copy number to evaluate the community sensitivity to nutrient disturbances, but community’s historical contingency need to be taken in account.
Afficher plus [+] Moins [-]Forest mosses sensitively indicate nitrogen deposition in boreal background areas Texte intégral
2020
Salemaa, Maija | Kieloaho, Antti-Jussi | Lindroos, Antti-Jussi | Merilä, Päivi | Poikolainen, Jarmo | Manninen, Sirkku
Forest mosses sensitively indicate nitrogen deposition in boreal background areas Texte intégral
2020
Salemaa, Maija | Kieloaho, Antti-Jussi | Lindroos, Antti-Jussi | Merilä, Päivi | Poikolainen, Jarmo | Manninen, Sirkku
Mosses take up nitrogen (N) mainly from precipitation through their surfaces, which makes them competent bioindicators of N deposition. We found positive relationships between the total N concentration (mossN%) of common terrestrial moss species (feather mosses Pleurozium schreberi and Hylocomium splendens, and a group of Dicranum species) and different forms of N deposition in 11–16 coniferous forests with low N deposition load in Finland. The mosses were collected either inside (Dicranum group) or both inside and outside (feather mosses) the forests. Deposition was monitored in situ as bulk deposition (BD) and stand throughfall (TF) and detected for ammonium (NH₄⁺-N), nitrate (NO₃⁻-N), dissolved organic N (DON), and total N (Nₜₒₜ, kg ha⁻¹yr⁻¹). Nₜₒₜ deposition was lower in TF than BD indicating that tree canopies absorbed N from deposition in N limited boreal stands. However, mossN% was higher inside than outside the forests. In regression equations, inorganic N in BD predicted best the mossN% in openings, while DON in TF explained most variation of mossN% in forests. An asymptotic form of mossN% vs. TF Nₜₒₜ curves in forests and free NH₄⁺-N accumulation in tissues in the southern plots suggested mosses were near the N saturation state already at the Nₜₒₜ deposition level of 3–5 kg ha⁻¹yr⁻¹. N leachate from ground litterfall apparently also contributed the N supply of mosses. Our study yielded new information on the sensitivity of boreal mosses to low N deposition and their response to different N forms in canopy TF entering moss layer. The equations predicting the Nₜₒₜ deposition with mossN% showed a good fit both in forest sites and openings, especially in case of P. schreberi. However, the open site mossN% is a preferable predictor of N deposition in monitoring studies to minimize the effect of tree canopies and N leachate from litterfall on the estimates.
Afficher plus [+] Moins [-]Forest mosses sensitively indicate nitrogen deposition in boreal background areas Texte intégral
2020
Salemaa, Maija | Kieloaho, Antti-Jussi | Lindroos, Antti-Jussi | Merilä, Päivi | Poikolainen, Jarmo | Manninen, Sirkku | https://orcid.org/0000-0002-4436-6413 | https://orcid.org/0000-0002-1315-6130 | 4100110710 | 4100310610 | 4100110510 | 4100310610 | Luonnonvarakeskus
Utilization of domestic wastewater as a water source of Tetradesmusobliquus PF3 for the biological removal of nitric oxide Texte intégral
2020
Ma, Shanshan | Yu, Yanling | Cui, Hao | Li, Jiang | Feng, Yujie
The reduction of nitrogen oxide (DeNOx) from flue gas by microalgae is a promising technology that has attracted increasing attention. Because the water source is a major limitation of microalgae application in the DeNOx from flue gas, we investigated the feasibility of using domestic wastewater (WW) as a water source. As a result, a biomass accumulation rate of 0.27 ± 0.01 mg L⁻¹ d⁻¹ was achieved by Tetradesmusobliquus PF3 cultivated in WW for 8 d, and 30 mg L⁻¹ of nitrate nitrogen was added to the WW to fulfill the nutrient requirements of the microalgae cells. The ammonium (NH₄⁺) nitrogen present in WW exerted inhibitory effects on the removal of nitric oxide (NO), thereby leading to 8% decrease removal efficiency in comparison with that using clean water and nutrients (BG11 medium). However, these inhibitory effects disappeared following the exhaustion of NH₄⁺ by T. obliquus PF3 after 1 d. To overcome the inhibition of NH₄⁺ and to achieve a high NO removal efficiency, a strategy of connecting two reactors in series was presented. The removal efficiency of NO by the two series reactors reached up to 71.2 ± 2.9%, which was significantly higher than that obtained by a single reactor (43.1 ± 3.6%). In addition, 70.9 ± 4.8% of the supplied NO was fixed into microalgae cells in the two reactors, which was 1.75 times higher than that in the single reactor (40.6 ± 5.1%), thereby suggesting that connecting two reactors in series rendered effective recovery of NO from flue gas using WW as a water source. In this study, we provided an economically viable water source for the application of microalgae in the biological DeNOx from flue gases.
Afficher plus [+] Moins [-]An increase of ammonia emissions from terrestrial ecosystems on the Tibetan Plateau since 1980 deduced from ice core record Texte intégral
2020
Zou, Xiang | Hou, Shugui | Zhang, Wangbin | Liu, Ke | Yu, Jinhai | Pang, Hongxi | Liu, Yaping
Ammonia (NH₃) emissions could have significant impacts on both ecosystems and human health. Ice cores from the Tibetan Plateau contain information about past ammonium (NH₄⁺) deposition, which could yield important insights into historical NH₃ emissions in the surrounding source regions as well as long-distance NH₄⁺ aerosol transport via atmospheric circulation. In this paper, we present a high-resolution atmospheric NH₄⁺ deposition record for the period, 1951–2008, reconstructed from the Zangser Kangri (ZK) ice core in the northern Tibetan Plateau. An empirical orthogonal function (EOF) analysis of major soluble ions (NH₄⁺, NO₃⁻, SO₄²⁻, Cl⁻, Na⁺, K⁺, Mg²⁺ and Ca²⁺) reveals that EOF 1 has significant loadings of all ions, therefore representing common transport pathways, while EOF 2 is only significantly loaded by NH₄⁺ (0.86) and NO₃⁻ (0.35), suggesting a unique signal possibly representing emissions from the surrounding terrestrial ecosystems on the Tibetan Plateau. Backward trajectory analysis indicates that the air masses over the ZK ice core drilling site primarily come from the northwestern Indian Peninsula. NH₃ emissions from agricultural activities in this area likely contribute to the NH₄⁺ deposition of the ZK ice core via the Indian monsoon. Correlations between EOF 2 time series and temperature, normalized difference vegetation index (NDVI) suggest that increasing temperature and vegetation after 1980 likely promoted NH₃ emissions from terrestrial ecosystems. Our results provide a reliable and valuable assessment of NH₄⁺ deposition from human activities and terrestrial ecosystems in the ZK ice core, and help in understanding air pollution over the past few decades in the northern Tibetan Plateau.
Afficher plus [+] Moins [-]PM2.5 from a broiler breeding production system: The characteristics and microbial community analysis Texte intégral
2020
Dai, Pengyuan | Shen, Dan | Tang, Qian | Huang, Kai | Li, Chunmei
Particulate matter (PM) released from the processes of livestock production has a negative impact on the health of animals and workers. Herein, the concentration, major chemical components, morphology and microbiological compositions of particulate matter 2.5 (PM2.5, particles with aerodynamic diameter less than 2.5 μm) in a broiler breeding house were investigated. The results showed that the PM2.5 distribution in the chicken house was affected by the illumination, draught fans, chicken frame structure and activity of the chickens in the broiler breeding house. Component analysis showed that organic carbon (OC) accounted for the largest proportion, and followed by element carbon (EC), SO42−, NO3−, NH4+, Na+, K+ and Ca2+. Ultrastructural observations revealed that the shape of PM2.5 had a round, rectangular, chain-like and irregular shape. The concentration of endotoxin was approximately 0.3 EU/m3. Microbiological analysis showed that at the genus level, the pathogenic bacteria included Staphylococcus, Corynebacterium, Enterococcus, Parabacteroides, Escherichia and Megamonas. The abundant harmful fungi were Aspergillus, Scopulariopsis, Wallemia, and Fusarium. Through redundancy analysis (RDA) analysis, we determined that OC, EC, Na+, K+, and NH4+ had strong correlations with Brachybacterium, Brevibacterium, Corynebacterium, Escherichia, Scopulariopsis and Microascus. SO42− was closely related to Scopulariopsis and Salinicoccus. Salinicoccus was also strongly correlated with NO3−. Our results indicated that feed, faeces, and outside soot are contributed to the increase in PM2.5 concentration in the chicken house, while the sources of the dominant bacterial and fungi might be feed, faeces, suspended outside soil and cereal crops.
Afficher plus [+] Moins [-]