Affiner votre recherche
Résultats 1-10 de 21
Tetracyclines uptake from irrigation water by vegetables: Accumulation and antimicrobial resistance risks
2023
Gudda, Fredrick | Odinga, E.S. | Tang, L. | Waigi, M.G. | Wang, J. | Abdalmegeed, D. | Gao, Y.
Wastewater irrigation may introduce antibiotic residues in the soil-plant systems. This study aimed to investigate the uptake of tetracyclines by spinach and collard greens and assess associated ecological and human health risks. Synthetic wastewater spiked with 1 ppm and 10 ppm of oxytetracycline, doxycycline, and tetracycline was used to grow vegetables in a greenhouse pot experiment. The uptake and accumulation of the tetracyclines were low and residual concentrations in the soil were negligible. All the tetracyclines were detected at concentrations ranging from 1.68 to 51.41 μg/g (spinach) and 1.94–30.95 μg/g (collard greens). The accumulation rate was in a dose-response scenario with a bioconcentration factor of 6.34 mL/kg (spinach) and 2.64 mL/kg (collard greens). Oxytetracycline had the highest accumulation in leaves, followed by doxycycline and tetracycline, and the residual concentrations followed the same order. The highest residual concentration was in soils receiving 10 ppm oxytetracycline. Residual concentrations in the soil were lower than accumulated levels and exerted negligible ecological risks. Tetracyclines accumulation in spinach significantly differed between the vegetables demonstrating a subspecies difference in uptake and accumulation. Ecological risk quotient (RQ) and human health risk quotient (HQ) were below thresholds that would exert toxicity and resistance selection impacts. Although RQs and HQs are low (<0.1), this study shows that the vegetables accumulate tetracyclines from irrigation water, posing plausible human health risks to allergic individuals. Similarly, the ecological risks cannot be ignored because the synergistic and antagonistic effects of sublethal concentrations can perturb ecosystem processes.
Afficher plus [+] Moins [-]Tracking antimicrobial resistance indicator genes in wild flatfish from the English Channel and the North Sea area: a One Health concern
2024
Bourdonnais, Erwan | Le Bris, Cédric | Brauge, Thomas | Midelet, Graziella | Bactériologie et Parasitologie des Produits de la Pêche et de l’Aquaculture (B3PA) ; Laboratoire de sécurité des aliments, sites de Maisons-Alfort et de Boulogne-sur-Mer (LSAl) ; Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail (ANSES)-Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail (ANSES) | BioEcoAgro - UMR transfrontalière INRAe - UMRT1158 ; Université d'Artois (UA)-Université de Liège-Université de Picardie Jules Verne (UPJV)-Université du Littoral Côte d'Opale (ULCO)-Université de Lille-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-JUNIA (JUNIA) ; Université catholique de Lille (UCL)-Université catholique de Lille (UCL) | BioEcoAgro - Equipe 8 - Food and Digestive Microbial Ecosystems: Interactions - Dynamics - Application(s) ; BioEcoAgro - UMR transfrontalière INRAe - UMRT1158 ; Université d'Artois (UA)-Université de Liège-Université de Picardie Jules Verne (UPJV)-Université du Littoral Côte d'Opale (ULCO)-Université de Lille-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-JUNIA (JUNIA) ; Université catholique de Lille (UCL)-Université catholique de Lille (UCL)-Université d'Artois (UA)-Université de Liège-Université de Picardie Jules Verne (UPJV)-Université du Littoral Côte d'Opale (ULCO)-Université de Lille-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-JUNIA (JUNIA) ; Université catholique de Lille (UCL)-Université catholique de Lille (UCL) | Université du Littoral Côte d'Opale (ULCO) | This study was supported by a doctoral fellowship from Région Hauts-de-France and Pôle Métropolitain de la Côte d’Opale (PMCO).
International audience | Antimicrobial resistance (AMR) is a burgeoning environmental concern demanding a comprehensive One Health investigation to thwart its transmission to animals and humans, ensuring food safety. Seafood, housing bacterial AMR, poses a direct threat to consumer health, amplifying the risk of hospitalization, invasive infections, and death due to compromised antimicrobial treatments. The associated antimicrobial resistance genes (ARGs) in diverse marine species can amass and transmit through various pathways, including surface contact, respiration, and feeding within food webs. Our research, focused on the English Channel and North Sea, pivotal economic areas, specifically explores the occurrence of four proposed AMR indicator genes (tet(A), blaTEM, sul1, and intI1) in a benthic food web. Analyzing 350 flatfish samples' skin, gills, and gut, our quantitative PCR (qPCR) results disclosed an overall prevalence of 71.4% for AMR indicator genes. Notably, sul1 and intI1 genes exhibited higher detection in fish skin, reaching a prevalence of 47.5%, compared to gills and gut samples. Proximity to major European ports (Le Havre, Dunkirk, Rotterdam) correlated with increased AMR gene frequencies in fish, suggesting these ports' potential role in AMR spread in marine environments. We observed a broad dispersion of indicator genes in the English Channel and the North Sea, influenced by sea currents, maritime traffic, and flatfish movements. In conclusion, sul1 and intI1 genes emerge as robust indicators of AMR contamination in the marine environment, evident in seawater and species representing a benthic food web. Further studies are imperative to delineate marine species' role in accumulating and transmitting AMR to humans via seafood consumption. This research sheds light on the urgent need for a concerted effort in comprehending and mitigating AMR risks in marine ecosystems within the context of One Health.
Afficher plus [+] Moins [-]Tracking antimicrobial resistance indicator genes in wild flatfish from the English Channel and the North Sea area: A one health concern
2024
Bourdonnais, Erwan | Le Bris, Cédric | Brauge, Thomas | Midelet, Graziella
Antimicrobial resistance (AMR) is a burgeoning environmental concern demanding a comprehensive One Health investigation to thwart its transmission to animals and humans, ensuring food safety. Seafood, housing bacterial AMR, poses a direct threat to consumer health, amplifying the risk of hospitalization, invasive infections, and death due to compromised antimicrobial treatments. The associated antimicrobial resistance genes (ARGs) in diverse marine species can amass and transmit through various pathways, including surface contact, respiration, and feeding within food webs. Our research, focused on the English Channel and North Sea, pivotal economic areas, specifically explores the occurrence of four proposed AMR indicator genes (tet(A), blaTEM, sul1, and intI1) in a benthic food web. Analyzing 350 flatfish samples' skin, gills, and gut, our quantitative PCR (qPCR) results disclosed an overall prevalence of 71.4% for AMR indicator genes. Notably, sul1 and intI1 genes exhibited higher detection in fish skin, reaching a prevalence of 47.5%, compared to gills and gut samples. Proximity to major European ports (Le Havre, Dunkirk, Rotterdam) correlated with increased AMR gene frequencies in fish, suggesting these ports' potential role in AMR spread in marine environments. We observed a broad dispersion of indicator genes in the English Channel and the North Sea, influenced by sea currents, maritime traffic, and flatfish movements. In conclusion, sul1 and intI1 genes emerge as robust indicators of AMR contamination in the marine environment, evident in seawater and species representing a benthic food web. Further studies are imperative to delineate marine species' role in accumulating and transmitting AMR to humans via seafood consumption. This research sheds light on the urgent need for a concerted effort in comprehending and mitigating AMR risks in marine ecosystems within the context of One Health.
Afficher plus [+] Moins [-]Antimicrobial resistance and geographical distribution of Staphylococcus sp. isolated from whiting (Merlangius merlangus) and seawater in the English Channel and the North sea
2024
Brauge, Thomas | Bourdonnais, Erwan | Trigueros, Sylvain | Cresson, Pierre | Debuiche, Sabine | Granier, Sophie A. | Midelet, Graziella
Staphylococcus is a significant food safety hazard. The marine environment serves as a source of food for humans and is subject to various human-induced discharges, which may contain Staphylococcus strains associated with antimicrobial resistance (AMR). The aim of this study was to assess the occurrence and geographical distribution of AMR Staphylococcus isolates in seawater and whiting (Merlangius merlangus) samples collected from the English Channel and the North Sea. We isolated and identified 238 Staphylococcus strains, including 12 coagulase-positive (CoPs) and 226 coagulase-negative (CoNs) strains. All CoPs isolates exhibited resistance to at least one of the 16 antibiotics tested. Among the CoNs strains, 52% demonstrated resistance to at least one antibiotic, and 7 isolates were classified as multi-drug resistant (MDR). In these MDR strains, we identified AMR genes that confirmed the resistance phenotype, as well as other AMR genes, such as quaternary ammonium resistance. One CoNS strain carried 9 AMR genes, including both antibiotic and biocide resistance genes. By mapping the AMR phenotypes, we demonstrated that rivers had a local influence, particularly near the English coast, on the occurrence of AMR Staphylococcus. The analysis of marine environmental parameters revealed that turbidity and phosphate concentration were implicated in the occurrence of AMR Staphylococcus. Our findings underscore the crucial role of wild whiting and seawater in the dissemination of AMR Staphylococcus within the marine environment, thereby posing a risk to human health.
Afficher plus [+] Moins [-]Antibiotic resistance genes correlate with metal resistances and accumulate in the deep water layers of the Black Sea
2022
Sabatino, Raffaella | Cabello-Yeves, Pedro J. | Eckert, Ester M. | Corno, Gianluca | Callieri, Cristiana | Brambilla, Diego | Dzhembekova, Nina | Moncheva, Snejana | Di Cesare, Andrea
Seas and oceans are a global reservoir of antibiotic resistance genes (ARGs). Only a few studies investigated the dynamics of ARGs along the water column of the Black Sea, a unique environment, with a peculiar geology, biology and history of anthropogenic pollution. In this study, we analyzed metagenomic data from two sampling campaigns (2013 and 2019) collected across three different sites in the Western Black Sea at depths ranging from 5 to 2000 m. The data were processed to annotate ARGs, metal resistance genes (MRGs) and integron integrase genes. The ARG abundance was significantly higher in the deep water layers and depth was the main driver of beta-diversity both for ARGs and MRGs. Moreover, ARG and MRG abundances strongly correlated (r = 0.95). The integron integrase gene abundances and composition were not influenced by the water depth and did not correlate with ARGs. The analysis of the obtained MAGs showed that some of them harbored intI gene together with several ARGs and MRGs, suggesting the presence of multidrug resistant bacteria and that MRGs and integrons could be involved in the selection of ARGs. These results demonstrate that the Black Sea is not only an important reservoir of ARGs, but also that they accumulate in the deep water layers where co-selection with MRGs could be assumed as a relevant mechanism of their persistence.
Afficher plus [+] Moins [-]Biomarkers-based assessment of triclosan toxicity in aquatic environment: A mechanistic review
2021
Kumar, Saurav | Paul, Tapas | Shukla, S.P. | Kundan Kumar, | Karmakar, Sutanu | Bera, Kuntal Krishna | Bhushan kumar, Chandra
Triclosan (TCS), an emergent pollutant, is raising a global concern due to its toxic effects on organisms and aquatic ecosystems. The non-availability of proven treatment technologies for TCS remediation is the central issue stressing thorough research on understanding the underlying mechanisms of toxicity and assessing vital biomarkers in the aquatic organism for practical monitoring purposes. Given the unprecedented circumstances during COVID 19 pandemic, a several-fold higher discharge of TCS in the aquatic ecosystems cannot be considered a remote possibility. Therefore, identifying potential biomarkers for assessing chronic effects of TCS are prerequisites for addressing the issues related to its ecological impact and its monitoring in the future. It is the first holistic review on highlighting the biomarkers of TCS toxicity based on a comprehensive review of available literature about the biomarkers related to cytotoxicity, genotoxicity, hematological, alterations of gene expression, and metabolic profiling. This review establishes that biomarkers at the subcellular level such as oxidative stress, lipid peroxidation, neurotoxicity, and metabolic enzymes can be used to evaluate the cytotoxic effect of TCS in future investigations. Micronuclei frequency and % DNA damage proved to be reliable biomarkers for genotoxic effects of TCS in fishes and other aquatic organisms. Alteration of gene expression and metabolic profiling in different organs provides a better insight into mechanisms underlying the biocide's toxicity. In the concluding part of the review, the present status of knowledge about mechanisms of antimicrobial resistance of TCS and its relevance in understanding the toxicity is also discussed referring to the relevant reports on microorganisms.
Afficher plus [+] Moins [-]Contribution of plasmidome, metal resistome and integrases to the persistence of the antibiotic resistome in aquatic environments
2022
Di Cesare, Andrea | Sabatino, Raffaella | Yang, Ying | Brambilla, Diego | Li, Pu | Fontaneto, Diego | Eckert, Ester M. | Corno, Gianluca
Wastewater treatment plants (WWTPs) are among the main hotspots of antibiotic resistance genes (ARGs) in the environment. Previously, we demonstrated that, by increasing anthropogenic pollution, the antibiotic resistome persisted in the microbial community of rivers and lakes, independently by changes in community composition. In this study, we reanalysed the data to test for the relation of metal resistance genes (MRGs), plasmids, and integrons to the persistence of the antibiotic resistome. The experiment consisted in replicated co-cultures of riverine or lacustrine microbial communities and WWTP effluents in different proportions. Samples before (T0) and after a short period of incubation (TF) were collected and community metagenomic data were obtained by shotgun sequencing. The data were processed to annotate MRGs, plasmids, and integrases. The integrases stabilized in the aquatic environment following the degree of contamination with effluent water (in particular in one site), whereas MRGs and plasmids showed stochastic trajectories. These results confirm the potential correlation between integrons and anthropogenic pollution, and the reliability of intI1 as a pollution marker. Only in one site MRGs, plasmids, and ARGs were correlated, highlighting their partial contribution to the persistence of ARGs in surface waters.
Afficher plus [+] Moins [-]Profiles of environmental antibiotic resistomes in the urban aquatic recipients of Sweden using high-throughput quantitative PCR analysis
2021
Lai, Foon Yin | Muziasari, Windi | Virta, Marko | Wiberg, Karin | Ahrens, Lutz
Antibiotic resistance in aquatic ecosystems presents an environmental health issue worldwide. Urban recipient water quality is susceptible to effluent discharges with antibiotic resistance contaminants and needs to be protected, particularly for those as sources of drinking water production. Knowledge on aquatic resistome profiles in downstream of wastewater treatment plants allows a better understanding of the extent to which antibiotic resistance contaminants emerge and spread in recipient waters, but such information remains very limited in Sweden. The key objective of this study was to determine the resistome profiles of numerous antibiotic resistance genes (ARGs), mobile genetic elements (MGEs) and other genes in urban recipient water systems connected to Sweden's major drinking water reservoir. This was achieved through analysis of surface water samples for 296 genes using high-throughput quantitative PCR arrays. A total of 167 genes were detected in at least one of the samples, including 150 ARGs conferring resistance to 11 classes of antibiotics, 7 integrase MGEs and 9 other genes. There was a spatial difference in the resistome profiles with the greatest average relative abundance of resistance genes observed in the water body of Västerås followed by Uppsala, Stockholm and Eskilstuna, as similar to the general pattern of the antibiotic sales for these regions. ARGs against β-lactams and sulfonamides showed the highest average relative abundance in the studied water bodies, while vancomycin resistance genes were only found in the Uppsala water environment. Generally, the recipient water bodies were detected with higher numbers of genes and greater relative abundances as compared to the upstream sites. Anthropogenic pollution, i.e., wastewater discharge, in the recipient water was also reflected by the finding of intI, sul1 and crAssphage. Overall, this study provided the first quantitative assessment of aquatic environmental resistomes in Sweden, highlighting the widespread of antibiotic resistance contaminants in urban recipient waters.
Afficher plus [+] Moins [-]Antimicrobial resistant Escherichia coli in Scottish wild deer: Prevalence and risk factors
2022
Elsby, Derek T. | Zadoks, Ruth N. | Boyd, Kenneth | Silva, Nuno | Chase-Topping, Margo | Mitchel, Mairi C. | Currie, Carol | Taggart, Mark A.
Antimicrobial resistance (AMR) is a recognised threat to global health. Obtaining data on the prevalence of AMR in environmental bacteria is key to understanding drivers and routes of transmission. Here, 325 Shiga toxin negative deer faecal samples—gathered from across the Scottish mainland—were screened for the presence of AMR Escherichia coli and investigated for potential risk factors associated with AMR occurrence. E. coli with resistance to antimicrobials of clinical health concern, including carbapenems and 3rd generation cephalosporins, were targeted. Ninety-nine percent of samples yielded E. coli, and the prevalence of resistant E. coli at the level of faecal samples was 21.8% (n = 71) for tetracycline, 6.5% (n = 21) for cefpodoxime, 0.3% for ciprofloxacin (n = 1), with no recorded resistance to meropenem. Potential risk factors for tetracycline and cefpodoxime resistance were investigated. The presence of broadleaved woodlands was significantly associated with both AMR phenotypes, which may relate to land use within or around such woodlands. Associated risk factors varied across resistance phenotype and deer species, with proximity or density of horses an indicator of significantly decreased and increased risk, respectively, or tetracycline and cefpodoxime resistance in E. coli from roe deer, but not from red deer. Distance from wastewater treatment plants was a significant risk factor for tetracycline resistance in E. coli from red deer but not from roe deer. Data indicated that AMR E. coli can occur in wild deer populations that are not directly exposed to the selective pressure exerted by antimicrobial treatment. Overall, resistance to critically important antimicrobials was found to be low in the studied population, suggesting no immediate cause for concern regarding human health. Utilising existing culling frameworks, wild deer in Scotland could function well as a sentinel species for the surveillance of AMR in the Scottish environment.
Afficher plus [+] Moins [-]Rainfall leads to elevated levels of antibiotic resistance genes within seawater at an Australian beach
2022
Williams, Nathan L.R. | Siboni, Nachshon | McLellan, Sandra L. | Potts, Jaimie | Scanes, Peter | Johnson, Colin | James, Melanie | McCann, Vanessa | Seymour, Justin R.
Anthropogenic waste streams can be major sources of antibiotic resistant microbes within the environment, creating a potential risk to public health. We examined patterns in the occurrence of a suite of antibiotic resistance genes (ARGs) and their links to enteric bacteria at a popular swimming beach in Australia that experiences intermittent contamination by sewage, with potential points of input including stormwater drains and a coastal lagoon. Samples were collected throughout a significant rainfall event (40.8 mm over 3 days) and analysed using both qPCR and 16S rRNA amplicon sequencing. Before the rainfall event, low levels of faecal indicator bacteria and a microbial source tracking human faeces (sewage) marker (Lachno3) were observed. These levels increased over 10x following rainfall. Within lagoon, drain and seawater samples, levels of the ARGs sulI, dfrA1 and qnrS increased by between 1 and 2 orders of magnitude after 20.4 mm of rain, while levels of tetA increased by an order of magnitude after a total of 40.8 mm. After 40.8 mm of rain sulI, tetA and qnrS could be detected 300 m offshore with levels remaining high five days after the rain event. Highest levels of sewage markers and ARGs were observed adjacent to the lagoon (when opened) and in-front of the stormwater drains, pinpointing these as the points of ARG input. Significant positive correlations were observed between all ARGs, and a suite of Amplicon Sequence Variants that were identified as stormwater drain indicator taxa using 16S rRNA amplicon sequencing data. Of note, some stormwater drain indicator taxa, which exhibited correlations to ARG abundance, included the human pathogens Arcobacter butzleri and Bacteroides fragilis. Given that previous research has linked high levels of ARGs in recreationally used environments to antimicrobial resistant pathogen infections, the observed patterns indicate a potentially elevated human health risk at a popular swimming beach following significant rainfall events.
Afficher plus [+] Moins [-]