Affiner votre recherche
Résultats 1-10 de 96
Understanding the effects of hydraulic fracturing flowback and produced water (FPW) to the aquatic invertebrate, Lumbriculus variegatus under various exposure regimes
2020
Mehler, W Tyler | Nagel, Andrew | Flynn, Shannon | Zhang, Yifeng | Sun, Chenxing | Martin, Jonathan | Alessi, Daniel | Goss, Greg G.
Hydraulic fracturing of horizontal wells is a cost effective means for extracting oil and gas from low permeability formations. Hydraulic fracturing often produces considerable volumes of flowback and produced water (FPW). FPW associated with hydraulic fracturing has been shown to be a complex, often brackish mixture containing a variety of anthropogenic and geogenic compounds. In the present study, the risk of FPW releases to aquatic systems was studied using the model benthic invertebrate, Lumbriculus variegatus and field-collected FPW from a fractured well in Alberta. Acute, chronic, and pulse toxicity were evaluated to better understand the implications of accidental FPW releases to aquatic environments. Although L.variegatus is thought to have a high tolerance to many stressors, acute toxicity was significant at low concentrations (i.e. high dilutions) of FPW (48 h LC50: 4–5%). Chronic toxicity (28 d)of FPW in this species was even more pronounced with LC50s (survival/reproduction) and EC50s (total mass) at dilutions as low as 0.22% FPW. Investigations evaluating pulse toxicity (6 h and 48 h exposure) showed a significant amount of latent mortality occurring when compared to the acute results. Additionally, causality in acute and chronic bioassays differed as acute toxicity appeared to be primarily driven by salinity, which was not the case for chronic toxicity, as other stressors appear to be important as well. The findings of this study show the importance of evaluating multiple exposure regimes, the complexity of FPW, and also shows the potential aquatic risk posed by FPW releases.
Afficher plus [+] Moins [-]Leaching of two northern France slag heaps: Influence on the surrounding aquatic environment
2020
Gaulier, Camille | Billon, Gabriel | Lesven, Ludovic | Falantin, Cécilia | Superville, Pierre-Jean | Baeyens, Willy | Gao, Yue
After the exploitation of coal mines in the 19th and 20th centuries in northern France, many mining slag heaps (SH) were left without any particular management or monitoring. Currently, the influence of these SHs on the quality of surrounding wetlands is hardly known.The purpose of this work is to determine the water quality in the neighbourhood of two SHs located near the city of Douai and its influence on the distribution of aquatic invertebrates in local wetlands. Our approach involves (1) the spatial and temporal characterization of the water composition (anions, major elements, sulphide, DOC and alkalinity) and of the biological diversity (aquatic invertebrates) and (2), based on this chemical and biological screening, the establishment of relationships between water quality and biodiversity distribution through multivariate data analysis. The results clearly indicate that substantial leaching from the slag heaps occurs, given the very high concentrations of dissolved sulphates (in the range of 2 g L⁻¹). While the pH remains weakly basic, indicating that the leaching water has been neutralized by the highly carbonated regional substratum, high levels of biodegradable organic matter and sulphate contents have been noticed. They sporadically cause significant drops in dissolved oxygen and the occurrence of dissolved sulphides that massively reduce biodiversity, qualitatively and quantitatively. In Summer, oxygen saturation is generally lower due to the higher rate of organic matter degradation, and the risk of anoxic episodes therefore increases. Finally, as wetlands are vulnerable environments, these preliminary results suggest that monitoring and management of these sites must be attempted quickly to avoid the degradation of those valuable habitats.
Afficher plus [+] Moins [-]Timber harvest alters mercury bioaccumulation and food web structure in headwater streams
2019
Willacker, James J. | Eagles-Smith, Collin A. | Kowalski, Brandon M. | Danehy, Robert J. | Jackson, Allyson K. | Adams, Evan M. | Evers, David C. | Eckley, Chris S. | Tate, Michael T. | Krabbenhoft, David P.
Timber harvest has many effects on aquatic ecosystems, including changes in hydrological, biogeochemical, and ecological processes that can influence mercury (Hg) cycling. Although timber harvest's influence on aqueous Hg transformation and transport are well studied, the effects on Hg bioaccumulation are not. We evaluated Hg bioaccumulation, biomagnification, and food web structure in 10 paired catchments that were either clear-cut in their entirety, clear-cut except for an 8-m wide riparian buffer, or left unharvested. Average mercury concentrations in aquatic biota from clear-cut catchments were 50% higher than in reference catchments and 165% higher than in catchments with a riparian buffer. Mercury concentrations in aquatic invertebrates and salamanders were not correlated with aqueous THg or MeHg concentrations, but rather treatment effects appeared to correspond with differences in the utilization of terrestrial and aquatic basal resources in the stream food webs. Carbon and nitrogen isotope data suggest that a diminished shredder niche in the clear-cut catchments contributed to lower basal resource diversity compared with the reference of buffered treatments, and that elevated Hg concentrations in the clear-cut catchments reflect an increased reliance on aquatic resources in clear-cut catchments. In contrast, catchments with riparian buffers had higher basal resource diversity than the reference catchments, indicative of more balanced utilization of terrestrial and aquatic resources. Further, following timber harvest THg concentrations in riparian songbirds were elevated, suggesting an influence of timber harvest on Hg export to riparian food webs. These data, coupled with comparisons of individual feeding guilds, indicate that changes in organic matter sources and associated effects on stream food web structure are important mechanisms by which timber harvest modifies Hg bioaccumulation in headwater streams and riparian consumers.
Afficher plus [+] Moins [-]Increased sensitivity of subantarctic marine invertebrates to copper under a changing climate - Effects of salinity and temperature
2019
Holan, Jessica R. | King, Catherine K. | Proctor, Abigael H. | Davis, Andrew R.
Stressors associated with climate change and contaminants, resulting from the activities of humans, are affecting organisms and ecosystems globally. Previous studies suggest that the unique characteristics of polar biota, such as slower metabolisms and growth, and the generally stable conditions in their natural environment, cause higher susceptibility to contamination and climate change than those in temperate and tropical areas. We investigated the effects of increased temperature and decreased salinity on copper toxicity in four subantarctic marine invertebrates using realistic projected conditions under a future climatic change scenario for this region. We hypothesised that these relatively subtle shifts in environmental stressors would impact the sensitivity of cold-adapted species to copper. The four test species were: a copepod Harpacticus sp.; isopod Limnoria stephenseni; flatworm Obrimoposthia ohlini; and bivalve Gaimardia trapesina. These species occupy a range of ecological niches, spanning intertidal and subtidal nearshore zones. We predicted that species would differ in their tolerance to stressors, depending on where they occurred within this ecological gradient. Organisms were exposed to the multiple stressors in a factorial design in laboratory based toxicity tests. Sensitivity estimates for copper (LC50) were calculated using a novel statistical approach which directly assessed the impacts of the multiple stressors. In three of the four species tested, sensitivity to copper was amplified by small increases in temperature (2-4 °C). The effects of salinity were more variable but a decrease of as little as 2 ppt caused a significant effect in one species. This study provides some of the first evidence that high latitude species may be at increased risk from contaminants under projected future climate conditions. This interaction, between contaminants and the abiotic environment, highlights a potential pathway to biodiversity loss under a changing climate.
Afficher plus [+] Moins [-]Species-specific transcriptomic responses in Daphnia magna exposed to a bio-plastic production intermediate
2019
Swart, Elmer | de Boer, Tjalf E. | Chen, Guangquan | Vooijs, Riet | van Gestel, Cornelis A.M. | Straalen, N. M. van | Roelofs, Dick
Hydroxymethylfurfural (HMF) is a plant-based chemical building block that could potentially substitute petroleum-based equivalents, yet ecotoxicological data of this compound is currently limited. In this study, the effects of HMF on the reproduction and survival of Daphnia magna were assessed through validated ecotoxicological tests. The mechanism of toxicity was determined by analysis of transcriptomic responses induced by exposure to different concentrations of HMF using RNA sequencing. HMF exerted toxicity to D. magna with an EC₅₀ for effects on reproduction of 17.2 mg/l. HMF exposure affected molecular pathways including sugar and polysaccharide metabolism, lipid metabolism, general stress metabolism and red blood cell metabolism, although most molecular pathways affected by HMF exposure were dose specific. Hemoglobin genes, however, responded in a sensitive and dose-related manner. No induction of genes involved in the xenobiotic metabolism or oxidative stress metabolism pathway could be observed, which contrasted earlier observations on transcriptional responses of the terrestrial model Folsomia candida exposed to the same compound in a similar dose. We found 4189 orthologue genes between D. magna and F. candida, yet only twenty-one genes of those orthologues were co-regulated in both species. The contrasting transcriptional responses to the same compound exposed at a similar dose between D. magna and F. candida indicates limited overlap in stress responses among soil and aquatic invertebrates. The dose-related expression of hemoglobin provides further support for using hemoglobin expression as a biomarker for general stress responses in daphnids.
Afficher plus [+] Moins [-]Effects of polystyrene microplastics on early stages of two marine invertebrates with different feeding strategies
2018
Messinetti, Silvia | Mercurio, Silvia | Parolini, Marco | Sugni, Michela | Pennati, Roberta
Nowadays, microplastics represent one of the main threats to marine ecosystems, being able to affect organisms at different stages of their life cycle and at different levels of the food web. Although the presence of plastic debris has been reported in different habitats and the ability to ingest it has been confirmed for different taxa, few studies have been performed to elucidate the effects on survival and development of marine animals. Thus, we explored the effects of different environmental concentrations of polystyrene microbeads on the early stages of two invertebrate species widespread in the Mediterranean shallow waters: the pelagic planktotrophic pluteus larvae of the sea urchin Paracentrotus lividus and the filter-feeding sessile juveniles of the ascidian Ciona robusta. We evaluated the effects on larvae and juvenile development and determined the efficiency of bead ingestion. The feeding stages of both species proved to be extremely efficient in ingesting microplastics. In the presence of microbeads, the metamorphosis of ascidian juveniles was slowed down and development of plutei altered. These results prompted the necessity to monitor the populations of coastal invertebrates since microplastics affect sensitive stages of life cycle and may have consequences on generation recruitment.
Afficher plus [+] Moins [-]Effects of potash mining on river ecosystems: An experimental study
2017
Cañedo-Argüelles, Miguel | Brucet, Sandra | Carrasco, Sergi | Flor-Arnau, Núria | Ordeix, Marc | Ponsá, Sergio | Coring, Eckhard
In spite of being a widespread activity causing the salinization of rivers worldwide, the impact of potash mining on river ecosystems is poorly understood. Here we used a mesocosm approach to test the effects of a salt effluent coming from a potash mine on algal and aquatic invertebrate communities at different concentrations and release modes (i.e. press versus pulse releases). Algal biomass was higher in salt treatments than in control (i.e. river water), with an increase in salt-tolerant diatom species. Salt addition had an effect on invertebrate community composition that was mainly related with changes in the abundance of certain taxa. Short (i.e. 48 h long) salt pulses had no significant effect on the algal and invertebrate communities. The biotic indices showed a weak response to treatment, with only the treatment with the highest salt concentration causing a consistent (i.e. according to all indices) reduction in the ecological quality of the streams and only by the end of the study. Overall, the treatment's effects were time-dependent, being more clear by the end of the study. Our results suggest that potash mining has the potential to significantly alter biological communities of surrounding rivers and streams, and that specific biotic indices to detect salt pollution should be developed.
Afficher plus [+] Moins [-]Population responses of Daphnia magna, Chydorus sphaericus and Asellus aquaticus in pesticide contaminated ditches around bulb fields
2014
Ieromina, O. | Peijnenburg, W.J.G.M. | de Snoo, G.R. | Vijver, M.G.
The goal of this study was to investigate the effects of ambient concentrations of pesticides combined with abiotic factors on the key aquatic species Daphnia magna, Chydorus sphaericus and Asellus aquaticus by means of 21 days field exposure experiments. In situ bioassays were deployed in ditches around flower bulb fields during spring and autumn 2011–2012. The results showed that phosphate was the most variable parameter followed by pesticides expressed as toxic units, as the main factors explaining differences between sites. Variation in reproduction and growth of cladoceran D. magna was largely explained by nutrients, whereas dissolved oxygen contributed mostly to variations in reproduction of C. sphaericus. Dissolved organic carbon contributed to variations in growth of the detrivore A. aquaticus. It is concluded that abiotic stressors rather than pesticides contributed significantly to the performance of aquatic invertebrates.
Afficher plus [+] Moins [-]Low concentrations, potential ecological consequences: Synthetic estrogens alter life-history and demographic structures of aquatic invertebrates
2013
Souza, María Sol | Hallgren, Per | Balseiro, Esteban | Hansson, Lars-Anders
Contraceptive drugs are nowadays found in aquatic environments around the globe. Particularly, 17α-ethinylestradiol (EE2) may act even at low concentrations, such as those recorded in natural ecosystems. We evaluated the physiological effects of EE2 on cyclopoids and calanoids, common copepods in both marine and freshwater communities. We used three EE2 concentrations and assessed its impact on activity of different physiological endpoints: Acetylcholinesterase (neurotransmission), Glutathione S-transferase (detoxifying system), and Caspase-3 (apoptosis). While EE2 exerts, distinctive effect on detoxifying and apoptotic systems, no effect on AChE was observed at environmental doses. Our results show that EE2 exposure affects differently copepod physiology endpoints, altering moulting process, adult recruitment in calanoids and calanoid to cyclopoid ratio. The ecological consequences of this underlying physiological process may affect since life history to population and community structures, and this represent a new aspects of this xenobiotic in natural systems.
Afficher plus [+] Moins [-]Organochlorines in the Vaccarès Lagoon trophic web (Biosphere Reserve of Camargue, France)
2009
Roche, H. | Vollaire, Y. | Persic, A. | Buet, A. | Oliveira-Ribeiro, C. | Coulet, E. | Banas, D. | Ramade, F.
During a decade (1996-2006), ecotoxicological studies were carried out in biota of the Vaccarès Lagoon (Biosphere Reserve in Rhone Delta, France). A multicontamination was shown at all levels of the trophic web due to a direct bioconcentration of chemical from the medium combined with a food transfer. Here, the pollutants investigated were organochlorines, among which many compounds banned or in the course of prohibition (or restriction) (PCB, lindane, pp'-DDE, dieldrin, aldrin, heptachlor, endosulfan ...) and some substances likely still used in the Rhone River basin (diuron, fipronil). The results confirmed the ubiquity of contamination. It proves to be chronic, variable and tends to regress; however contamination levels depend on the trophic compartment. A biomagnification process was showed. A comparison of investigation methods used in other Mediterranean wetlands provides basis of discussion, and demonstrates the urgent need of modelling to assess the ecotoxicological risk in order to improve the management of such protected areas. The Vaccarès Lagoon trophic web biomagnifies organochlorine pollutants.
Afficher plus [+] Moins [-]