Affiner votre recherche
Résultats 1-10 de 90
High-resolution inventory of NO emissions from agricultural soils over the Ile-de-France region
2010
Rolland, Marie Noelle | Gabrielle, Benoit | Laville, Patricia | Cellier, Pierre | Beekmann, Matthias | Gilliot, Jean-Marc | Michelin, Joël | Hadjar, Dalila | Curci, G. | Environnement et Grandes Cultures (EGC) ; Institut National de la Recherche Agronomique (INRA)-AgroParisTech | Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA (UMR_7583)) ; Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS) | Dipartimento di Fisica - CETEMPS ; Università degli Studi dell'Aquila = University of L'Aquila (UNIVAQ)
Arable soils are a significant source of nitric oxide (NO), a precursor of tropospheric ozone, and thereby contribute to ozone pollution. However, their actual impact on ozone formation is strongly related to their spatial and temporal emission patterns, which warrant high-resolution estimates. Here, we combined an agro-ecosystem model and geo-referenced databases to map these sources over the 12 000 km2 administrative region surrounding Paris, France, with a kilometric level resolution. The six most frequent arable crop species were simulated, with emission rates ranging from 1.4 kg N–NO ha-1 yr-1 to 11.1 kg N–NO ha-1 yr-1. The overall emission factor for fertilizer-derived NO emissions was 1.7%, while background emissions contributed half of the total NO efflux. Emissions were strongly seasonal, being highest in spring due to fertilizer inputs. They were mostly sensitive to soil type, crops' growing season and fertilizer N rates. The use of an agro-ecosystem model at regional scale makes it possible to map the emissions of nitric oxide from arable soils at a resolution compatible with tropospheric ozone models.
Afficher plus [+] Moins [-]Nitrous oxide emission and sweet potato yield in upland soil: Effects of different type and application rate of composted animal manures
2021
Ruangcharus, Chuanpit | Kim, Sung Un | Yoo, Ga-young | Choi, Eun-Jung | Kumar, Sandeep | Kang, Namgoo | Hong, Chang Oh
The aims of this study were to determine type and application rate of composted animal manure to optimize sweet potato yield relative to N₂O emissions from upland soils. To this end, the study was conducted on upland soils amended with different types and rates of composted animal manure and located at two geographically different regions of South Korea. Field trials were established at Miryang and Yesan in South Korea during the sweet potato (Ipomoea batatas) growing season over 2 years: 2017 (Year 1) and 2018 (Year 2). Three composted animal manures (chicken, cow, and pig) were applied at the rates of 0, 10, and 20 Mg ha⁻¹ to upland soils in both locations. In both Years and locations, manure type did not affected significantly cumulative N₂O emissions from soil during the sweet potato growing season or the belowground biomass of sweet potato. However, application rate of animal manures affected significantly the cumulative N₂O emission, nitrogen (N) in soil, and belowground biomass of sweet potato. An increase in cumulative N₂O emission with application rates of animal manures was related to total N and inorganic N concentration in soil. The belowground biomass yield of sweet potato but also the cumulative N₂O emission increased with increasing application rate of composted animal manures up to 7.6 and 16.0 Mg ha⁻¹ in Miryang and Yesan, respectively. To reduce N₂O emission from arable soil while increasing crop yield, composted animal manures should be applied at less than application rate that produce the maximum belowground biomass of sweet potato.
Afficher plus [+] Moins [-]Using reservoir sediment deposits to determine the longer-term fate of chernobyl-derived 137Cs fallout in the fluvial system
2021
Ivanov, M.M. | Konoplev, A.V. | Walling, D.E. | Konstantinov, E.A. | Gurinov, A.L. | Ivanova, N.N. | Kuzmenkova, N.V. | Tsyplenkov, A.S. | Ivanov, M.A. | Golosov, V.N.
Vast areas of Europe were contaminated by the fallout of ¹³⁷Cs and other radionuclides, as a result of the Chernobyl accident in 1986. The post-fallout redistribution of Chernobyl-derived ¹³⁷Cs was associated with erosion and sediment transport processes within the fluvial system. Bottom sediments from lakes and reservoirs can provide a valuable source of information regarding the post-fallout redistribution and fate of ¹³⁷Cs released by the Chernobyl accident. A detailed investigation of sediment-associated ¹³⁷Cs in the bottom sediments of a reservoir in a Chernobyl-affected area in Central Russia has been undertaken. A new approach, based on the vertical distribution of ¹³⁷Cs activity concentrations in the reservoir bottom sediment makes it possible to separate the initially deposited bottom sediment, where the ¹³⁷Cs activity reflects the direct fallout of Chernobyl-derived ¹³⁷Cs to the reservoir surface and its subsequent incorporation into sediment deposited immediately after the accident, from the sediment mobilized from the catchment deposited subsequently. The deposits representing direct fallout from the atmosphere was termed the “Chernobyl peak”. Its shape can be described by a diffusion equation and it can be distinguished from the remaining catchment-derived ¹³⁷Cs associated with sediment accumulated with sediments during the post-Chernobyl period. The ¹³⁷Cs depth distribution above the "Chernobyl peak" was used to provide a record of changes in the concentration of sediment-associated ¹³⁷Cs transported from the upstream catchment during the post-Chernobyl period. It was found that the ¹³⁷Cs activity concentration in the sediment deposited in the reservoir progressively decreased during the 30-year period after the accident due to a reduction in the contribution of sediment eroded from the arable land in the catchment. This reflects a reduction in both the area of cultivated land area and the reduced incidence of surface runoff from the slopes during spring snowmelt due to climate warming.
Afficher plus [+] Moins [-]Remediation of hexavalent chromium in contaminated soil using amorphous iron pyrite: Effect on leachability, bioaccessibility, phytotoxicity and long-term stability
2020
Li, Yunyi | Tian, Xiaoyu | Liang, Jialiang | Chen, Xinlei | Ye, Jiangyu | Liu, Yangsheng | Liu, Yuanyuan | Wei, Yunmei
A large amounts of arable land is facing a high risk of hexavalent chromium (Cr(VI)) pollution, which requires remediation using a low toxic agent. In this study, the remediation effect of amorphous iron pyrite (FeS₂₍ₐₘ₎) on Cr(VI) in Cr(VI)-contaminated soil was evaluated by systematically analyzing the variation of the leachability, bioaccessibility, phytotoxicity, and long-term stability of the remediated soil. The effectiveness of FeS₂₍ₐₘ₎ on the leachability was assessed by alkaline digestion and the toxicity characteristic leaching procedure (TCLP); the effect on the bioaccessibility was evaluated via the physiologically based extraction test (PBET) and the Tessier sequential extraction; the effect on the phytotoxicity was assessed via phytotoxicity bioassay (seed germination experiments) based on rape (Brassica napus L.) and cucumber (Cucumis Sativus L.), and the long-term stability of the Cr(VI)-remediated soil was appraised using column tests with groundwater and acid rain as the influents. The results show that FeS₂₍ₐₘ₎, with a stoichiometry of 4× exhibited a high efficiency in the remediation of Cr(VI) and decreased its leachability and bioaccessibility during the 30-day remediation period. In addition, seed germination rate, accumulation and translocation of Cr, and root and shoot elongation of rape and cucumber of remediated soil are not significantly different from those of clean soil, illustrating that FeS₂₍ₐₘ₎ is suitable for remediating Cr(VI) contaminated arable soil. The stabilization of Cr(VI) in contaminated soil using FeS₂₍ₐₘ₎ was maintained for 1575 days. The long-term effectiveness was further confirmed by the increasing amount of free Fe and Mn in the effluent and the decreasing redox potential. In summary, FeS₂₍ₐₘ₎ has an excellent efficiency for the remediation of Cr(VI), demonstrating it is a very promising alternative for use in the contaminated arable soil.
Afficher plus [+] Moins [-]New Miscanthus hybrids cultivated at a Polish metal-contaminated site demonstrate high stomatal regulation and reduced shoot Pb and Cd concentrations
2019
Rusinowski, Szymon | Krzyżak, Jacek | Clifton-Brown, John | Kane, Elaine | Mos, Michal | Webster, Richard | Sitko, Krzysztof | Pogrzeba, Marta
The increased bioeconomy targets for the biomass share of renewable energy production across Europe should be met using land unsuitable for food production. Miscanthus breeding programs targeted the production of plants with a diverse range of traits allowing a wider utilization of land resources for biofuel production without competing with arable crops. These traits include increasing tolerances to drought, chilling, and to metal(loid)s excess. Two novel Miscanthus hybrids, GNT41 and GNT34, were compared against Miscanthus x giganteus (Mxg) on metal-contaminated arable land in Poland. This study aimed at evaluating their yield, biomass quality and quantifying seasonal differences in photosynthetic and transpiration parameters. A secondary objective was to identify key physiological mechanisms underlying differences in metal accumulation between the investigated plants. The new hybrids produced a similar yield to Mxg (13–15 t ha−1 yr−1), had shorter shoots, higher Leaf Area Index and stem number. Based on gas exchange measurements, GNT34 exhibited isohydric (water-conserving) behavior. The stomatal response to light of the new hybrids was at least twice as fast as that of Mxg, a trait that is often associated with increased seasonal water use efficiency. This contributed to the almost 40% reduction in shoot Pb and Cd concentrations for the new hybrids as compared to Mxg. This suggested that promoting stomatal regulation in conjunction with improved water conservation may be a target for improving plants for wider use on metals contaminated land.
Afficher plus [+] Moins [-]Cultivation of C4 perennial energy grasses on heavy metal contaminated arable land: Impact on soil, biomass, and photosynthetic traits
2019
Rusinowski, S. | Krzyżak, J. | Sitko, K. | Kalaji, H.M. | Jensen, E. | Pogrzeba, M.
The objective of this study was to evaluate the potential of three C4 perennial grasses (Miscanthus x giganteus, Panicum virgatum and Spartina pectinata) for biomass production on arable land unsuitable for food crop cultivation due to Pb, Cd and Zn contamination. We assessed soil properties, biomass yield, metal concentrations, and the photosynthetic performance of each species. Physico-chemical and elemental analyses were performed on soil samples before plantation establishment (2014) and after three years of cultivation (2016), when leaf area index, plant height, yield and heavy metal content of biomass were also determined. Physiological measurements (gas exchange, pigment content, chlorophyll a fluorescence) were recorded monthly between June and September on mature plants in 2016. Cultivation of investigated plants resulted in increased pH, nitrogen, and organic matter (OM) content in soil, although OM increase (13%) was significant only for S. pectinata plots. During the most productive months, maximal quantum yield values of primary photochemistry (Fv/Fm) and gas exchange parameter values reflected literature data of those plants grown on uncontaminated sites. Biomass yields of M. x giganteus (15.0 ± 0.4 t d.m. ha−1) and S. pectinata (12.6 ± 1.2 t d.m. ha−1) were also equivalent to data published from uncontaminated land. P. virgatum performed poorly (4.1 ± 0.4 t d.m. ha−1), probably due to unfavourable climatic conditions, although metal uptake in this species was the highest (3.6 times that of M. x giganteus for Pb). Yield and physiological measurements indicated that M. x giganteus and S. pectinata were unaffected by the levels of contamination and therefore offer alternatives for areas where food production is prohibited. The broad cultivatable latitudinal range of these species suggests these results are widely relevant for development of the bioeconomy. We recommend multi-location trials under diverse contaminant and environmental regimes to determine the full potential of these species.
Afficher plus [+] Moins [-]Uranium in agricultural soils and drinking water wells on the Swiss Plateau
2018
Bigalke, Moritz | Schwab, Lorenz | Rehmus, Agnes | Tondo, Patrick | Flisch, Markus
Mineral phosphorus fertilizers are regularly applied to agricultural sites, but their uranium (U) content is potentially hazardous to humans and the environment. Fertilizer-derived U can accumulate in the soil, but might also leach to ground-, spring and surface waters. We sampled 19 mineral fertilizers from the canton of Bern and soils of three arable and one forest reference sites at each of four locations with elevated U concentrations (7–28 μg L⁻¹) in nearby drinking water wells. The total U concentrations of the fertilizers were measured. The soils were analysed at three depth intervals down to 1 m for general soil parameters, total Cd, P, U and NaHCO₃-extractable U concentrations, and ²³⁴/²³⁸U activity ratios (AR). The U concentrations and AR values of the drinking water samples were also measured. A theoretical assessment showed that fertilizer-derived U may cause high U concentrations in leaching waters (up to approx. 25 μg L⁻¹), but normally contributes only a small amount (approx. 0–3 μg L⁻¹). The arable soils investigated showed no significant U accumulation compared to the forest sites. The close positive correlation of AR with NaHCO₃-extractable U (R = 0.7, p < 0.001) indicates that application of fertilizer can increase the extractable U pool. The lack of depth gradients in the soil U concentrations (1.5–2.7 mg kg⁻¹) and AR (0.90–1.06) ratios are inconsistent with the accumulation of U in the surface soil, and might indicate some leaching of fertilizer-derived U. The AR values in the water samples were close to 1, possibly suggesting an influence of fertilizer-derived U. However, based on findings from the literature and considering the heterogeneity of the catchment area, the agricultural practices, and the comparatively long distance to the groundwater, we conclude that fertilizer-derived U makes only a minor contribution to the elevated U concentrations in the water samples.
Afficher plus [+] Moins [-]Spatial and temporal distribution of antibiotic resistomes in a peri-urban area is associated significantly with anthropogenic activities
2018
Xiang, Qian | Chen, Qing-Lin | Zhu, Dong | An, Xin-Li | Yang, Xiao-Ru | Su, Jian-Qiang | Qiao, Min | Zhu, Yong-Guan
With the rapid development of urbanization and industrialization, the peri-urban areas are often the sites for waste dumps, which may exacerbate the occurrence and spread of antibiotic resistance from waste to soil bacteria. However, the profiles of antibiotic resistomes and the associated factors influencing their dissemination in peri-urban areas have not been fully explored. Here, we characterized the antibiotic resistance genes (ARGs) in peri-urban arable and pristine soils in four seasons at the watershed scale, by using high-throughput qPCR. ARGs in peri-urban soils were diverse and abundant, with a total of 222 genes were detected in the peri-urban soil samples. The arable soil harbored more diverse ARGs compared to the pristine soils, and nearly all the ARGs detected in the pristine soils were also detected in the farmlands. A random forest prediction showed that the overall patterns of ARGs clustered closely with the landuse type. Mantel test and partial redundancy analysis indicated that bacterial community variation is a major contributor to antibiotic resistome alteration. Significant positive correlation was found between the abundance of ARGs and mobile genetic elements (MGEs), suggesting potential mobility of ARGs in peri-urban areas. Our results extend knowledge of the resistomes compositions in peri-urban areas, and suggest that anthropogenic activities driving its spatial and temporal distribution.
Afficher plus [+] Moins [-]Accumulation of cadmium and uranium in arable soils in Switzerland
2017
Bigalke, Moritz | Ulrich, Andrea | Rehmus, Agnes | Keller, Armin
Mineral phosphorus (P) fertilizers contain contaminants that are potentially hazardous to humans and the environment. Frequent mineral P fertilizer applications can cause heavy metals to accumulate and reach undesirable concentrations in agricultural soils. There is particular concern about Cadmium (Cd) and Uranium (U) accumulation because these metals are toxic and can endanger soil fertility, leach into groundwater, and be taken up by crops. We determined total Cd and U concentrations in more than 400 topsoil and subsoil samples obtained from 216 agricultural sites across Switzerland. We also investigated temporal changes in Cd and U concentrations since 1985 in soil at six selected Swiss national soil monitoring network sites. The mean U concentrations were 16% higher in arable topsoil than in grassland topsoil. The Cd concentrations in arable and grassland soils did not differ, which we attribute to soil management practices and Cd sources other than mineral P fertilizers masking Cd inputs from mineral P fertilizers. The mean Cd and U concentrations were 58% and 9% higher, respectively, in arable topsoil than in arable subsoil, indicating that significant Cd and U inputs to arable soils occurred in the past. Geochemical mass balances confirmed this, indicating an accumulation of 52% for Cd and 6% for U. Only minor temporal changes were found in the Cd concentrations in topsoil from the six soil-monitoring sites, but U concentrations in topsoil from three sites had significantly increased since 1985. Sewage sludge and atmospheric deposition were previously important sources of Cd to agricultural soils, but today mineral P fertilizers are the dominant sources of Cd and U. Future Cd and U inputs to agricultural soils may be reduced by using optimized management practices, establishing U threshold values for mineral P fertilizers and soils, effectively enforcing threshold values, and developing and using clean recycled P fertilizers.
Afficher plus [+] Moins [-]Status of phthalate esters contamination in agricultural soils across China and associated health risks
2014
Niu, Lili | Xu, Yang | Xu, Chao | Yun, Lingxiang | Liu, Weiping
The extensive utilization of phthalate-containing products has lead to ubiquitous contamination of phthalate esters (PAEs) in various matrices. However, comprehensive knowledge of their pollution in Chinese farmland and associated risks is still limited. In this study, 15 PAEs were determined in soils from agricultural fields throughout the Mainland China. The concentrations of Σ15PAEs were in the range of 75.0–6369 μg kg−1. Three provinces (i.e., Fujian, Guangdong and Xinjiang, China) showed the highest loadings of PAEs. Bis(2-Ethylhexyl) phthalate (DEHP) was found as the most abundant component and contributed 71.5% to the ∑15PAEs. The major source of PAEs in arable soils was associated with the application of agricultural plastic films, followed by the activities for soil fertility. Furthermore, the non-cancer and carcinogenic risks of target PAEs were estimated. The hazard indexes (HIs) of PAEs in all samples were below 1 and the carcinogenic risk levels were all within 10−4. Results from this study will provide valuable information for Chinese agricultural soil management and risk avoidance.
Afficher plus [+] Moins [-]