Affiner votre recherche
Résultats 1-10 de 11
Trace elements concentrations in soil, desert-adapted and non-desert plants in central Iran: Spatial patterns and uncertainty analysis
2018
Sakizadeh, Mohamad | Rodríguez Martín, Jose Antonio | Zhang, Chaosheng | Sharafabadi, Fatemeh Mehrabi | Ghorbani, Hadi
The concentrations of Cd, Cr and Pb in soil samples and As, Cd, Cr and Pb in plant specimens were analyzed in an arid area in central Iran. Plants were categorized into desert-adapted (Haloxylon ammodendron, Atraphaxis spinosa and Artemisia persica) and non-desert species. It was found that the trace element (TE) accumulating potential of the desert species (Haloxylon ammodendron and Artemisia persica) with a mean value of 0.1 mg kg⁻¹ for Cd was significantly higher than that of the majority of the non-desert species with an average of 0.05 mg kg⁻¹. Artemisia also had a high As accumulating capability with a mean level of 0.8 mg kg⁻¹ in comparison with an average of 0.2 mg kg⁻¹ for most of the other plant species. The mean values of Cr and Pb in Haloxylon ammodendron and Artemisia persica were 5 and 3 mg kg⁻¹, respectively. Among the desert-adapted plants, Atraphaxis proved to be a species with high Cr and Pb accumulating potential, as well. The geoaccumulation index and the overall pollution scores indicated that the highest environmental risk was related to Cd. Different statistical analyses were used to study the spatial patterns of soil Cd and their connections with pollution sources. The variogram was estimated using a classical approach (weighted least squares) and was compared with that of the posterior summaries that resulted from the Bayesian technique, which lay within the 95% Bayesian credible quantile intervals (BIC) of posterior parameter distributions. The prediction of cadmium values at un-sampled locations was implemented by multi-Gaussian kriging and sequential Gaussian simulation methods. The prediction maps showed that the region most contaminated by Cd was the north-eastern part of the study area, which was linked to mining activities, while agricultural influence contributed less in this respect.
Afficher plus [+] Moins [-][Pollens: geographical distribution and temporal evolution (France)] | Les pollens: distribution geographique et evolution temporelle (France)
2000
Thibaudon, M. (Reseau National de Surveillance Aerobiologique, Saint Clement les Places (France))
Supercritical fluid extraction of four aromatic herbs and assessment of the volatile compositions, bioactive compounds, antibacterial, and anti-biofilm activity
2021
Al-Maqtari, Qais Ali | Al-Ansi, Waleed | Mahdi, Amer Ali | Al-Gheethi, Adel Ali Saeed | Mushtaq, Bilal Sajid | Al-Adeeb, Abdulqader | Wei, Minping | Yao, Weirong
Artemisia arborescens, Artemisia abyssinica, Pulicaria jaubertii, and Pulicaria petiolaris are fragrant herbs traditionally used in medication and as a food seasoning. To date, there are no studies on the use of supercritical fluids extraction with carbon dioxide (SFE-CO₂) on these plants. This study evaluates and compares total phenolic content (TPC), antioxidant activity by DPPH• and ABTS•⁺, antibacterial, and anti-biofilm activities of SFE-CO₂ extracts. Extraction was done by SFE-CO₂ with 10% ethanol as a co-solvent. A. abyssinica extract had the highest extraction yield (8.9% ± 0.41). The GC/MS analysis of volatile compounds identified 307, 265, 213, and 201compounds in A. abyssinica, A. arborescens, P. jaubertii, and P. petiolaris, respectively. The P. jaubertii extract had the highest TPC (662.46 ± 50.93 mg gallic acid equivalent/g dry extract), antioxidant activity (58.98% ± 0.20), and antioxidant capacity (71.78 ± 1.84 mg Trolox equivalent/g dry extract). The A. abyssinica and P. jaubertii extracts had significantly higher antimicrobial activity and were more effective against Gram-positive bacteria. B. subtilis was the most sensitive bacterium. P. aeruginosa was the most resistant bacterium. P. jaubertii extract had the optimum MIC and MBC (0.4 mg/ml) against B. subtilis. All SFE-CO₂ extracts were effective as an anti-biofilm formation for all tested bacteria at 1/2 MIC. Meanwhile, P. jaubertii and P. petiolaris extracts were effective anti-biofilm for most tested bacteria at 1/16 MIC. Overall, the results indicated that the SFE-CO₂ extracts of these plants are good sources of TPC, antioxidants, and antibacterial, and they have promising applications in the industrial fields.
Afficher plus [+] Moins [-]Effects of Modified Excess Sludge on the Growth of Artemisia ordosica and Transformation of Heavy Metals
2016
Xiang, Yulin | Xiang, Yuxiu | Wang, Lipeng | Zhang, Zhifang
A greenhouse experiment was accomplished to investigate the feasibility of excess sludge modified by coal fly ash pretreatment and γ-ray irradiation in soil application for cultivation of Artemisia ordosica. The results showed that modified excess sludge provided a positive effect on the growth of Artemisia ordosica. The modified excess sludge and aeolian sandy soil at the volume ratio of 1:2 was optimal, and nutrient concentrations of Artemisia ordosica reached the highest. In the aeolian sandy soil, the bio-concentration factor values of most heavy metals were less than 1.0 except for Cu, Zn, and Ni. The average bio-concentration factor values of heavy metals in Artemisia ordosica increased in a sequence of Mo < Cd < Fe < V < Cr < Co < Mn < Pb < Cu < Zn < Ni for all samples. Artemisia ordosica could be used to decrease the bioavailability and eco-toxicity of Ni, V, and Mo in all cultivation experiments of artificial soil, and Artemisia ordosica could also reduce the bioavailability and eco-toxicity of Cu, Cd, Cr, and Mn in the artificial soil of modified excess sludge and aeolian sandy soil at the volume ratio of 1:2.
Afficher plus [+] Moins [-]Physiological response of barley seedlings to salinity and artemisinin combined stresses under freeze-thaw environment
2022
Zhang, Wei | Bao, Guozhang | Tang, Wenyi | Dai, Gejun | Xiao, Jing | Liu, Jiapeng | Wang, Zhao | Xi, Jinghui
In the Qinghai-Tibet Plateau, both the large daily temperature difference and soil salinization make plants susceptible to abiotic stresses such as freeze-thaw and salinity. Meanwhile, crops in this area can be affected by artemisinin, an antimalarial secondary metabolite produced in Artemisia. Under freeze-thaw and salinity stresses, artemisinin was induced as an allelopathy stress factor to explore the physiological response of highland barley, including the relative electrical conductivity (RC), soluble protein (SP) content, malondialdehyde (MDA) content, antioxidant enzyme activity, and water use efficiency (WUE). Compared with the control group, the contents of RC and MDA in seedling leaves under stress were significantly increased by 24.74–402.37% and 20.18–77.95%, indicating that cell membrane permeability was greatly damaged, and WUE was significantly decreased by 15.77–238.59%. The activity of enzymes increased under single stress and decreased under combined stress. Salinity, artemisinin, and freeze-thaw stress show a synergistic relationship; that is, compound stresses were more serious than single stress. In summary, the results of this study revealed the physiological and ecological responses of barley seedlings under different habitat stresses and the interactions among different stress factors.
Afficher plus [+] Moins [-]Variations of Nutrients in Gross Rainfall, Stemflow, and Throughfall Within Revegetated Desert Ecosystems
2016
Zhang, Ya-feng | Wang, Xin-Ping | Pan, Yan-xia | Hu, Rui
Revegetation in arid desert ecosystems is emerging as a practical strategy to cease sand dune encroachment and combat desertification worldwide. The revegetation is expected to affect the spatial distribution of rainfall to the ground within vegetation communities. However, the impact of revegetation on the temporal distribution of dry and/or wet dust fall trapped by shrub canopies via stemflow and throughfall remains a topic of concern for shrub “fertile islands.” This study investigated whether xerophytic shrub community acts as a sink of various cations (Na⁺, K⁺, Ca²⁺, and Mg²⁺), inorganic anions (Cl⁻ and SO₄ ²⁻), total nitrogen, and total phosphorus to the revegetated desert ecosystems. Gross rainfall, the stemflow, and throughfall of two codominated xerophytic shrubs (Caragana korshinskii and Artemisia ordosica) were volumetrically measured after natural rainfall events, and their samples were chemically analyzed in the laboratory. Results showed that ions had higher concentrations in stemflow than in throughfall, followed by gross rainfall. Ion concentrations in stemflow and throughfall strongly depends on the first flush effect, rainfall depth, and the antecedent dry period before a rainfall event occurring. Concentrations of most of the ions in stemflow and throughfall collected after the first rainfall event of a year were obviously higher than other rainfall events for both shrub species, suggesting a first flush effect. Ion concentrations generally decreased with the increasing depth of gross rainfall, stemflow, and throughfall, while increased with prolonged antecedent dry period. Based on nutrient input by stemflow and throughfall at the community scale, we conclude that chemical enrichment of stemflow and throughfall plays an important role in forming the shrub fertile islands and contributes significantly to a sustainable succession of the revegetated desert ecosystems.
Afficher plus [+] Moins [-]Assessment of phytoremediation potential of native plant species naturally growing in a heavy metal-polluted saline–sodic soil
2020
Mousavi Kouhi, Seyed Mousa | Moudi, Maryam
Many areas throughout the world, mainly arid and semi-arid regions, are simultaneously affected by salinity stress and heavy metal (HM) pollution. Phytoremediation of such environments needs suitable plants surviving under those combined stresses. In the present study, native species naturally growing under an extreme condition, around Qaleh-Zari copper mine located in the eastern part of Iran, with HM-contaminated saline–sodic soil, were identified to find suitable plant species for phytoremediation. For this purpose, the accumulation of HMs (Cu, Zn, Cd, and Pb) in the root and shoot (stem and leaf) of the plants and their surrounding soils was determined to find their main phytoremediation strategies: phytoextraction or phytostabilization. Seven native species surviving in such extreme condition were found, including Launaea arborescens (Batt.) Murb, Artemisia santolina Schrenk, Pulicaria gnaphalodes (Vent.) Boiss, Zygophyllum eurypterum Boiss. & Buhse, Peganum harmala L., Pteropyrum olivieri Jaub. & Spach, and Aerva javanica (Burm. f.) Juss. ex Schult. Evaluation of phytoremediation potential of the identified species based on the calculated HM bioconcentration in roots, HM translocation from roots to shoots, and HM accumulation in the shoots revealed that all of the species were metal phytostabilizers rather than hyperaccumulators. Therefore, these native species can be used for phytostabilization in the HM-contaminated saline soils to prevent HMs entering the uncontaminated areas and groundwater. Compared with the biennial low-biomass hyperaccumulators, some native species such as Z. eurypterum and A. javanica may have more economic value for phytoremediation because of a significant accumulation of HMs in their relatively higher biomass.
Afficher plus [+] Moins [-]Effects of road proximity on heavy metal concentrations in soils and common roadside plants in Southern California
2018
Khalid, Noreen | Hussain, Mumtaz | Young, Hillary S. | Boyce, Benjamin | Aqeel, Muhammad | Noman, Ali
Concerns about motor vehicle emissions on human health are typically focused on aerial pollution and are regulated via controls on tailpipe emissions. However, vehicles also contribute heavy metal emissions through non-tailpipe pathways (e.g., brake wear, tire particulates). The metal pollutants produced via both tailpipe and non-tailpipe pathways pose threats to both human and ecosystem health long after they have settled from the atmosphere largely via contamination of soils and plants. In this study, we examined the effect of vehicular pollution on soils and plants in five paired sites in Gaviota, CA. In each site, we examined the effect of proximity to road on heavy metal concentrations (cadmium, nickel, lead, and zinc) in four of the most common roadside plant species—Melilotus indicus, Herschfeldia incana, Avena sativa, and Artemisia californica—as well as on soil metal concentrations. Then, to look at potential effects of road proximity and associated metal pollution on plants, we also examined the carbon and nitrogen ratios of all the plant samples. We found strong and significant effects of proximity to road on concentrations of all heavy metals in plants; plants in close proximity to roads had metal concentrations between 8 and 11 times higher than plants farther from roads. Plant C:N ratios also varied strongly among site types and were always higher in close proximity to roads as compared to farther off roads, potentially indicating broader effects of road proximity to plant ecology and leaf quality for consumers in the region.
Afficher plus [+] Moins [-]Screening of 18 species for digestate phytodepuration
2015
Pavan, Francesca | Breschigliaro, Simone | Borin, Maurizio
This experiment assesses the aptitude of 18 species in treating the digestate liquid fraction (DLF) in a floating wetland treatment system. The pilot system was created in NE Italy in 2010 and consists of a surface-flow system with 180 floating elements (Tech-IA®) vegetated with ten halophytes and eight other wetland species. The species were transplanted in July 2011 in basins filled with different proportions of DLF/water (DLF/w); periodic increasing of the DLF/w ratio was imposed after transplanting, reaching the worst conditions for plants in summer 2012 (highest EC value 7.3 mS cm/L and NH₄-N content 225 mg/L). It emerged that only Cynodon dactylon, Typha latifolia, Elytrigia atherica, Halimione portulacoides, Salicornia fruticosa, Artemisia caerulescens, Spartina maritima and Puccinellia palustris were able to survive under the system conditions. Halophytes showed higher dry matter production than other plants. The best root development (up to 40-cm depth) was recorded for Calamagrostis epigejos, Phragmites australis, T. latifolia and Juncus maritimus. The highest nitrogen (10–15 g/m²) and phosphorus (1–4 g/m²) uptakes were obtained with P. palustris, Iris pseudacorus and Aster tripolium. In conclusion, two halophytes, P. palustris and E. atherica, present the highest potential to be used to treat DLF in floating wetlands.
Afficher plus [+] Moins [-]Response of ecosystem functioning to environmental variations in an artificial sand-binding vegetation desert in northwestern China
2020
Zhou, Yuanyuan | Li, Xinrong | Gao, Yanhong | Wang, Yanli | Mao, Zhongchao
The establishment of artificial sand-binding vegetation is one of the main means for restoring damaged ecosystems that are impacted by global change. This study was conducted to evaluate the influence of environmental factors on ecosystem function (net ecosystem exchange (NEE), evapotranspiration (ET), and water use efficiency (WUE)) in an artificial sand-binding vegetation desert (with dominant shrubs, such as Artemisia ordosica and Caragana korshinskii, and herbaceous plants) in northwestern China. NEE, ET, and meteorological data were observed with the eddy covariance (EC) technique. The random forest (RF) method was used to identify major environmental factors that affected NEE, ET, and WUE. Our results showed that the mean annual NEE, ET, and WUE values were − 112.4 g C m⁻², 232.1 mm, and 0.49 g C kg⁻¹ H₂O, respectively, during the 2015 to 2018 growing seasons. At the weekly scale, the most important drivers of NEE were the normalized difference vegetation index (NDVI) and soil water content (SWC). Rainfall, SWC, and NDVI were important drivers of ET. WUE was mainly controlled by rainfall and SWC. Linear regression showed that NEE had significant negative relationships with the NDVI and SWC. ET had positive relationships with rainfall, SWC, and the NDVI. WUE had significant negative relationships with SWC and rainfall. These findings indicate that drought inhibited ET more than carbon absorption, thus promoting the WUE of the ecosystem to some extent. The close relation of the ecosystem function to SWC implies that this ecosystem may be critically regulated by future climate change (specifically, changes in rainfall patterns).
Afficher plus [+] Moins [-]