Affiner votre recherche
Résultats 1-4 de 4
Effects of Pseudomonas fluorescens Seed Bioinoculation on Heavy Metal Accumulation for Mirabilis jalapa Phytoextraction in Smelter-Contaminated Soil
2013
Petriccione, M. | Di Patre, D. | Ferrante, P. | Papa, S. | Bartoli, G. | Fioretto, A. | Scortichini, M.
Some Pseudomonas fluorescens strains, consistently isolated from the rhizosphere of wild plants grown in a soil that was highly polluted with illegal waste of smelter residues, were utilised for Mirabilis jalapa seed bioinoculation to verify their effects on seed germination and on promoting a higher heavy metal accumulation in the plant rhizosphere and/or uptake in the leaves. The high content of heavy metals in the soil induced a decrease in either the leaf dry weight or photosynthetic pigment concentration during all vegetative phase of M. jalapa. Bioinoculation with P. fluorescens strains significantly increased the germination of seeds and the root length in the contaminated soil. In some bacterial strain/seed combination, bioinoculation significantly increased the accumulation of heavy metals in M. jalapa rhizosphere. For Cd, the concentration of this metal in the rhizospheres of bioinoculated plants ranged from 270 to 910 μg g-1 of dry weight compared with 200 μg g-1 of dry weight for the non-coated plants. Two P. fluorescens strains, AA27 and MO49, which were isolated from Artemisia annua and Melilotus officinalis, respectively, induced a significantly higher rhizosphere availability also for Cr, Cu, Ni and Zn. However, despite the relevant accumulation of the heavy metals in the plant rhizosphere, generally the metal uptake into the leaves was rather low. Both analysis of variance and principal component analysis confirmed this finding. However, one P. fluorescens strain, CD1, which was isolated from the multi-metal accumulator Cynodon dactylon, significantly promoted the M. jalapa leaf uptake for Cr, Cu and Zn. The plant metal uptake assessment, confirmed the per se capability of M. jalapa to effectively uptake Cd (30 %) and Cu (12.72 %) from the rhizosphere to the leaves, whereas the uptake for the other metals was low: Ni (2.66 %), Zn (2.46 %), Cr (1.75 %), Pb (0.73 %). © 2013 Springer Science+Business Media Dordrecht.
Afficher plus [+] Moins [-]Temperature-Dependent Toxicity of Artemisinin Toward the Macrophyte Lemna minor and the Algae Pseudokirchneriella subcapitata
2014
Jessing, Karina K. | Andresen, Marianne | Cedergreen, Nina
Artemisinin, an antimalarial compound derivated from the cultivated plant Artemisia annua L., is produced in situ through cultivation of A. annua under different climatic conditions. The bioactive compound artemisinin has been observed to spread to the surroundings as well as to leach to surface- and groundwater. To make better risk assessments of A. annua which is cultivated under varying climatic conditions, the temperature-dependent toxicity of artemisinin toward the green algae Pseudokirchneriella subcapitata and the macrophyte Lemna minor was evaluated at temperatures ranging from 10 to 30 °C. To include a possible effect of temperature on the degradation rate of artemisinin, artemisinin concentrations were measured during the experiment and toxicity was related to the time-weighted averages of exposure concentrations. The toxicity of artemisinin toward the macrophyte L. minor and the algae P. subcapitata increased with increasing growth rates, and we conclude that bioavailability plays a minor role in the observed relation between temperature and toxicity of artemisinin. The obtained results are important for possible future risk assessment of A. annua cultivation.
Afficher plus [+] Moins [-]Carrageenan oligomers and salicylic acid act in tandem to escalate artemisinin production by suppressing arsenic uptake and oxidative stress in Artemisia annua (sweet wormwood) cultivated in high arsenic soil
2021
Naeem, Muhammad | Aftab, Tariq | Ansari, Abid A. | Khan, Mohammad Masroor Akhtar
The present study is aimed to elucidate the effects of concomitant application of irradiated carrageenan (IC) oligomers and salicylic acid (SA) on Artemisia annua L. varieties, viz. “CIM-Arogya” (tolerant) and “Jeevan Raksha” (sensitive) exposed to arsenic (As) stress. Artemisia annua has been known for its sesqui-terpene molecule artemisinin, which is useful in curing malaria. The two compounds, IC and SA, have been established as effective plant growth-promoting molecules for several agricultural and horticultural crops. To test the stress tolerance providing efficacy of IC and SA, the characterization of various physiological and biochemical parameters, growth as well as yield attributes was done in the present experiment. A. annua plants were given various treatments viz. (i) Control (0) (ii) 45 mg As kg⁻¹ of soil (iii) 80 mg L⁻¹ IC+45 mg As kg⁻¹ of soil (iv) 10⁻⁶ M SA+45 mg As kg⁻¹ of soil (vi) 45 mg As kg⁻¹ soil+80 mg L⁻¹ IC+10⁻⁶ M SA. Plants of A. annua suffered from prominent injuries due to oxidative stress generated by As. At 90 and 120 days after planting (DAP), As toxicity was manifested in reduction of most of the studied growth parameters. However, antioxidant activities such as catalase (CAT), peroxidase (POX), superoxide dismutase (SOD), and ascorbate peroxidase (APX) were enhanced in As-stressed conditions and their activities were further enhanced in IC+SA-treated plants. Application of As significantly produced the highest artemisinin content and yield in “CIM-Arogya” over “Jeevan Raksha.” Noticeably, the selected plant growth regulators (PGRs) (IC and SA) applied individually through foliage were found efficient, though, the concomitant effect of PGRs was much pronounced compared to their alone application in countering the toxicity of As. The interactive action of PGRs escalated the overall production (yield) of artemisinin (58.7% and 53.8%) in tolerant and sensitive varieties of A. annua in the presence of soil As. Conclusively, the concomitant application of IC and SA proved much effective and successful over their individual use in exploring the overall development of A. annua subjected to As stress.
Afficher plus [+] Moins [-]Effects of allelochemical artemisinin in Artemisia annua on Microcystis aeruginosa: growth, death mode, and microcystin-LR changes
2021
Ni, Lixiao | Wu, Hanqi | Du, Cunhao | Li, Xianglan | Li, Yan | Xu, Chu | Wang, Peifang | Li, Shiyin | Zhang, Jianhua | Chen, Xuqing
To investigate the effects of an allelochemical artemisinin extracted from Artemisia annua (A. annua) on cell growth, death mode, and microcystin-LR (MC-LR) changes of Microcystis aeruginosa (M. aeruginosa), a series of morphological and biochemical characteristics were studied. The results showed that artemisinin could inhibit the growth of M. aeruginosa and reduce the content of phycobiliprotein. Under the allelopathy of artemisinin, algae cells deformed due to swelling, which caused cell membranes to rupture and cell contents to leak. FDA/PI double-staining results showed that 15.10–94.90% of algae cells experienced the death mode of necrosis-like. Moreover, there were 8.35–14.50% of algae cells undergoing programmed cell death, but their caspase-3-like protease activity remained unchanged, which may mean that algae cells were not experiencing caspase-dependent apoptosis under artemisinin stress. Attacked by artemisinin directly, both intracellular and extracellular MC-LR increased sharply with the upregulation of mcyB, mcyD, and mcyH. The upregulation multiple of mcyH suggested that M. aeruginosa could accelerate transportation of algal toxin under adverse conditions of artemisinin. Artemisinin not only can inhibit the growth of M. aeruginosa but it also causes the accelerated release and increase of microcystin-LR. These imply that the application of artemisinin should be reconsidered in practical water bodies.
Afficher plus [+] Moins [-]