Affiner votre recherche
Résultats 1-10 de 75
Ozone pollution mitigation in guangxi (south China) driven by meteorology and anthropogenic emissions during the COVID-19 lockdown Texte intégral
2021
Fu, Shuang | Guo, Meixiu | Fan, Linping | Deng, Qiyin | Han, Deming | Wei, Ye | Luo, Jinmin | Qin, Guimei | Cheng Jinping,
With the implementation of COVID-19 restrictions and consequent improvement in air quality due to the nationwide lockdown, ozone (O₃) pollution was generally amplified in China. However, the O₃ levels throughout the Guangxi region of South China showed a clear downward trend during the lockdown. To better understand this unusual phenomenon, we investigated the characteristics of conventional pollutants, the influence of meteorological and anthropogenic factors quantified by a multiple linear regression (MLR) model, and the impact of local sources and long-range transport based on a continuous emission monitoring system (CEMS) and the HYSPLIT model. Results show that in Guangxi, the conventional pollutants generally declined during the COVID-19 lockdown period (January 24 to February 9, 2020) compared with their concentrations during 2016–2019, while O₃ gradually increased during the resumption (10 February to April 2020) and full operation periods (May and June 2020). Focusing on Beihai, a typical Guangxi region city, the correlations between the daily O₃ concentrations and six meteorological parameters (wind speed, visibility, temperature, humidity, precipitation, and atmospheric pressure) and their corresponding regression coefficients indicate that meteorological conditions were generally conducive to O₃ pollution mitigation during the lockdown. A 7.84 μg/m³ drop in O₃ concentration was driven by meteorology, with other decreases (4.11 μg/m³) explained by reduced anthropogenic emissions of O₃ precursors. Taken together, the lower NO₂/SO₂ ratios (1.25–2.33) and consistencies between real-time monitored primary emissions and ambient concentrations suggest that, with the closure of small-scale industries, residual industrial emissions have become dominant contributors to local primary pollutants. Backward trajectory cluster analyses show that the slump of O₃ concentrations in Southern Guangxi could be partly attributed to clean air mass transfer (24–58%) from the South China Sea. Overall, the synergistic effects of the COVID-19 lockdown and meteorological factors intensified O₃ reduction in the Guangxi region of South China.
Afficher plus [+] Moins [-]More obvious air pollution impacts on variations in bacteria than fungi and their co-occurrences with ammonia-oxidizing microorganisms in PM2.5 Texte intégral
2019
Fan, Xiao-Yan | Gao, Jing-Feng | Pan, Kai-Ling | Li, Ding-Chang | Dai, Hui-Hui | Li, Xing
Based on long-term systematic sampling, information is currently limited regarding the impacts of different air pollution levels on variations of bacteria, fungi and ammonia-oxidizing microorganisms (AOMs) in fine particulate matter (PM₂.₅), especially their interactions. Here, PM₂.₅ samples were weekly collected at different air pollution levels in Beijing, China during one-year period. Microbial composition was profiled using Illumina sequencing, and their interactions were further investigated to reveal the hub genera with network analysis. Diversity of bacteria and fungi showed obvious seasonal variations, and the heavy- or severe-pollution levels mainly affected the diversity and composition of bacteria, but not fungi. While, the community structure of both bacteria and fungi was influenced by the combination of air pollution levels and seasons. The most abundant bacterial genera and some genera with highest abundance in heavy- or severe-pollution days were the hub bacteria in PM₂.₅. Whereas, only the dominant fungi in light-pollution days in winter were the hub fungi in PM₂.₅. The complex positive correlations of bacterial or fungal pathogens would aggravate the air pollution effects on human health, despite of their low relative abundances. Moreover, the strong co-occurrence and co-exclusion patterns of bacteria and fungi in PM₂.₅ were identified. Furthermore, the hub environmental factors (e.g., relative humidity and atmospheric pressure) may play central roles in the distributions of bacteria and fungi, including pathogens. Importantly, AOMs showed significant co-occurrence patterns with the main bacterial and fungal genera and potential pathogens, providing possible microbiological evidences for controlling ammonia emissions to effectively reduce PM₂.₅ pollution. These results highlighted the more obvious air pollution impacts on bacteria than fungi, and the complex bacterial-fungal interactions, as well as the important roles of AOMs in airborne microbial interactions webs, improving our understanding of bioaerosols in PM₂.₅.
Afficher plus [+] Moins [-]Field performance of the radon-deficit technique to detect and delineate a complex DNAPL accumulation in a multi-layer soil profile Texte intégral
2021
Barrio-Parra, F. | Izquierdo-Díaz, M. | Díaz-Curiel, J. | De Miguel, E.
The performance of the radon (²²²Rn)-deficit technique has been evaluated at a site in which a complex DNAPL mixture (mostly hexachlorocyclohexanes and chlorobenzenes) has contaminated all four layers (from top to bottom: anthropic backfill, silt, gravel and marl) of the soil profile. Soil gas samples were collected at two depths (0.8 m and 1.7 m) in seven field campaigns and a total of 186 ²²²Rn measurements were performed with a pulse ionization detector. A statistical assessment of the influence of field parameters on the results revealed that sampling depth and atmospheric pressure did not significantly affect the measurements, while the location of the sampling point and ground-level atmospheric temperature did. In order to remove the bias introduced by varying field temperatures and hence to be able to jointly interpret ²²²Rn measurements from different campaigns, ²²²Rn concentrations were rescaled by dividing each individual datum by the mean ²²²Rn concentration of its corresponding field campaign. Rescaled ²²²Rn maps showed a high spatial correlation between ²²²Rn minima and maximum contaminant concentrations in the top two layers of the soil profile, successfully delineating the surface trace of DNAPL accumulation in the anthropic backfill and silt layers. However, no correlation could be established between ²²²Rn concentrations in superficial soil gas and contaminant concentration in the deeper two layers of the soil profile. These results indicate that the ²²²Rn-deficit technique is unable to describe the vertical variation of contamination processes with depth but can be an effective tool for the preliminary characterization of sites in which the distance between the inlet point of the sampling probe and the contaminant accumulation falls within the effective diffusion length of ²²²Rn in the affected soil profile.
Afficher plus [+] Moins [-]The association of liver function biomarkers with internal exposure of short- and medium-chain chlorinated paraffins in residents from Jinan, China Texte intégral
2021
Liu, Yi | Han, Xiumei | Zhao, Nan | Fang, Xinxin | Zhang, Shiwen | Li, Shixue | Jiang, Wei | Ding, Lei
Chlorinated paraffins (CPs) are pervasive environmental pollutants which have been reported to be hepatotoxic by laboratory cell and animal studies. However, the related epidemiological reports on their hepatotoxic effects to humans are sparse. In this study, we evaluated the associations between six liver enzymes and serum short-chain CP (SCCP) or medium-chain CP (MCCP) concentrations of 197 residents in Jinan, China. Serum S/MCCPs were detected by quadrupole time-of-flight high-resolution mass spectrometry coupled with atmospheric pressure chemical ionization source (APCI-QTOF-HRMS), and quantified by pattern deconvolution method. The associations between total serum S/MCCP concentrations (ΣS/MCCPs) and continuous liver enzyme levels were assessed by linear regression. Odds ratios (ORs) for the effects of serum ΣS/MCCPs concentrations on liver function biomarkers dichotomized by clinical reference intervals were predicted by logistic regression, either treating ΣS/MCCPs as continuous or categorical dependents. After multivariable adjustment, linear regression results illustrated that 1-ln unit increase in serum ΣSCCPs was negatively associated with male PA levels [-6.08, 95% confidence interval (CI): −11.90, −3.25, p < 0.05], positively associated with male TB levels (1.80, 95% CI: 0.28, 3.31, p < 0.05), and positively associated with female AST levels (1.39, 95% CI: 0.07, 2.70, p < 0.05). One-ln unit increase in serum ΣMCCPs was negatively associated male PA levels (−7.56, 95% CI: −17.15, −4.03, p < 0.05). Logistic regression results suggested that male serum ΣSCCPs were associated with increased prevalence of abnormal PA (OR = 1.47 per 1 ln-unit increase, CI = 1.18, 1.82) and TB (OR = 1.75, 95% CI = 1.12, 2.76) levels, and male serum ΣMCCPs were significantly associated with increased prevalence of abnormal PA (OR = 1.43, 95% CI = 1.03, 1.97) levels. In addition, male participants with concentrations above the median ΣS/MCCPs were associated with increased risk for abnormal PA levels [SCCPs, 2.11-fold (95% CI = 1.15, 3.87); MCCPs, 1.94-fold (95% CI = 1.24, 3.03)]. Male participants with concentrations above the median ΣSCCPs were also associated with increased risk for abnormal TB levels (OR = 1.75, 95% CI = 1.12, 2.76). Conclusively, our results revealed that CP internal exposure was associated with disturbed liver biomarker levels, suggesting the hepatotoxicity of both SCCPs and MCCPs to humans.
Afficher plus [+] Moins [-]Understanding long-term variations of meteorological influences on ground ozone concentrations in Beijing During 2006–2016 Texte intégral
2019
Chen, Ziyue | Zhuang, Yan | Xie, Xiaoming | Chen, Danlu | Cheng, Nianliang | Yang, Lin | Li, Ruiyuan
Recently, ground ozone has become one major airborne pollutant and the frequency of ozone-induced pollution episodes has increased rapidly across China. However, due to the lack of long-term observation data, relevant research on the characteristics and influencing factors of urban ozone concentrations remains limited. Based on ground ozone observation data during 2006–2016, we quantified the causality influence of individual meteorological factors on ozone concentrations in Beijing using a convergent cross mapping (CCM) method. The result indicated that the influence of each meteorological factor on ozone concentrations varied significantly across seasons and years. At the inter-annual scale, all-year meteorological influences on ozone concentrations were much more stable than seasonal meteorological influences. At the seasonal scale, meteorological influences on ozone concentrations were stronger in spring and autumn. Amongst multiple individual factors, temperature was the key meteorological influencing factor for ozone concentrations in all seasons except winter, when wind, humidity and SSD exerted major influences on ozone concentrations. In addition to temperature, air pressure was another meteorological factor that exerted strong influences on ozone concentrations. At both the inter-annual and seasonal scale, the influence of temperature and humidity on ozone concentrations was generally stable whilst that of other factors experienced large variations. Different from PM2.5, meteorological influences on ozone concentrations were relatively weak in summer, when ozone concentrations were the highest in Beijing. Given the generally stable meteorological influences on ozone concentrations and human-induced emissions of VOCs and NOx across seasons, warming induced notable increase in summertime biogenic emissions of VOCs and NOx can be a major driver for the increasing ozone pollution episodes. This research provides useful references for understanding long-term meteorological influences on ozone concentrations in mega cities in China.
Afficher plus [+] Moins [-]Species and release characteristics of VOCs in furniture coating process Texte intégral
2019
Qi, Yiqing | Shen, Liming | Zhang, Jilei | Yao, Jia | Lu, Rong | Miyakoshi, Tetsuo
Volatile organic compounds (VOCs) are an important factor affecting ambient air quality, and furniture production is one of the important sources of VOC pollution. High VOC concentrations have adverse effects on the environment and worker welfare in furniture factories. In order to control VOC emissions in a furniture workshop, the VOC species and concentration distributions were examined. Qualitative analysis of VOC species was carried out by headspace gas chromatography/mass spectrometry. The results showed that VOCs from a furniture workshop were mainly 12 substances including acetate, toluene, and xylene compounds. The heights and representative positions of VOCs released during the coating process were determined, and the results showed that VOC concentrations depended on environmental and height factors. The concentration of VOCs decreased with increasing altitude and reached a maximum concentration at 0.4 m above the ground. Because the concentration of VOCs varied with temperature, humidity, air pressure, and amount of spray paint, this paper established functional relationships between VOC concentrations and temperature, humidity, air pressure, and amount of spray paint. These results provide a theoretical basis for furniture workshops to automatically monitor and control VOCs.VOCs from the furniture workshop were mainly composed of 10 substances including acetate, toluene, and xylene compounds.
Afficher plus [+] Moins [-]Do progestins contribute to (anti-)androgenic activities in aquatic environments? Texte intégral
2018
Šauer, Pavel | Bořík, Adam | Golovko, Oksana | Grabic, Roman | Staňová, Andrea Vojs | Valentová, Olga | Stará, Alžběta | Šandová, Marie | Kocour Kroupová, Hana
Unknown compounds with (anti-)androgenic activities enter the aquatic environment via municipal wastewater treatment plants (WWTPs). Progestins are well-known environmental contaminants capable of interfering with androgen receptor (AR) signaling pathway. The aim of the present study was to determine if 15 selected progestins have potential to contribute to (anti-)androgenic activities in municipal wastewaters and the respective recipient surface waters. AR-specific Chemically Activated LUciferase gene eXpression bioassay in agonistic (AR-CALUX) and antagonistic (anti-AR-CALUX) modes and liquid chromatography tandem atmospheric pressure chemical ionization/atmospheric photoionization with hybrid quadrupole/orbital trap mass spectrometry operated in high resolution product scan mode (LC-APCI/APPI-HRPS) methods were used to assess (anti-)androgenic activity and to detect the target compounds, respectively. The contribution of progestins to (anti-)androgenic activities was evaluated by means of a biologically and chemically derived toxicity equivalent approach. Androgenic (0.08–59 ng/L dihydrotestosterone equivalents – DHT EQs) and anti-androgenic (2.4–26 μg/L flutamide equivalents – FLU EQs) activities and progestins (0.19–75 ng/L) were detected in selected aquatic environments. Progestins displayed androgenic potencies (0.01–0.22 fold of dihydrotestosterone) and strong anti-androgenic potencies (9–62 fold of flutamide). Although they accounted to some extent for androgenic (0.3–29%) and anti-androgenic (4.6–27%) activities in influents, the progestins’ contribution to (anti-)androgenic activities was negligible (≤2.1%) in effluents and surface waters. We also tested joint effect of equimolar mixtures of target compounds and the results indicate that compounds interact in an additive manner. Even if progestins possess relatively strong (anti-)androgenic activities, when considering their low concentrations (sub-ng/L to ng/L) it seems unlikely that they would be the drivers of (anti-)androgenic effects in Czech aquatic environments.
Afficher plus [+] Moins [-]Empirical analysis of the effect of descent flight path angle on primary gaseous emissions of commercial aircraft Texte intégral
2018
Turgut, Enis T. | Usanmaz, Oznur | Rosen, Marc A.
In this study, the effects of descent flight path angle (between 1.25° and 4.25°) on aircraft gaseous emissions (carbon monoxide, total hydrocarbons and nitrogen oxides) are explored using actual flight data from aircraft flight data recording system and emissions indices from the International Civil Aviation Organization. All emissions parameters are corrected to flight conditions using Boeing Fuel Flow Method2, where the ambient air pressure, temperature and humidity data are obtained from long-term radiosonde data measured close to the arrival airport. The main findings highlight that the higher the flight path angle, the higher the emission indices of CO and HC, whereas the lower the emissions index of NOx and fuel consumption. Furthermore, during a descent, a heavier aircraft tends to emit less CO and HC, and more NOx. For a five-tonne aircraft mass increase, the average change in emissions indices are found to be −4.1% and −5.7% (CO), −5.4% and −8.2% (HC), and +1.1% and +1.6% (NOx) for high and low flight path angle groups, respectively. The average emissions indices for CO, HC and NOx during descent are calculated to be 24.5, 1.7 and 5.6 g/kg of fuel, whereas the average emissions for descending from 32,000 ft (9.7 km) and 24,000 ft (7.3 km) are calculated to be 7–8 kg (CO), ∼0.5 kg (HC) and ∼3 kg (NOx).
Afficher plus [+] Moins [-]Hydroxylated 2-Ethylhexyl tetrabromobenzoate isomers in house dust and their agonistic activities with several nuclear receptors Texte intégral
2017
Peng, Hui | Sun, Jianxian | Saunders, David M.V. | Codling, Garry | Wiseman, Steve | Jones, Paul D. | Giesy, John P.
In the current study, by combining ultra-high resolution (UHR) MS1 spectra, MS2 spectra, and derivatization, three hydroxylated isomers of 2-ethylhexyl tetrabromobenzoate (OH-TBB) were identified in Firemaster® 550 and BZ-54 technical products. Also, a new LC-UHRMS method, using atmospheric pressure chemical ionization (APCI), was developed for simultaneous analysis of OH-TBB, TBB, hydroxylated bis(2-ethylhexyl)-tetrabromophthalate (OH-TBPH) and TBPH in 23 samples of dust collected from houses in Saskatoon, SK, Canada. OH-TBBs were detected in 91% of samples, with a geometric mean concentration of 0.21 ng/g, which was slightly less than those of OH-TBPH (0.35 ng/g). TBB was detected in 100% of samples of dust with a geometric mean concentration of 992 ng/g. Significant (p < 0.001) log-linear relationships between concentrations of OH-TBBs, TBB, or OH-TBPHs and TBPH in dust support the hypothesis of a common source of these compounds. OH-TBBs were found to be strong agonists of peroxisome proliferator-activated receptor gamma (PPARγ) and weaker agonists of the estrogen receptor (ER), but no agonistic activity was observed with the androgen receptor (AR). Occurrence of OH-TBBs in technical products and house dust, together with their relatively strong PPARγ activities, indicated their potential risk to health of humans.
Afficher plus [+] Moins [-]Urban air pollution and meteorological factors affect emergency department visits of elderly patients with chronic obstructive pulmonary disease in Taiwan Texte intégral
2017
Ding, Pei-Hsiou | Wang, Gen-Shuh | Guo, Yue-Leon | Chang, Shuenn-Chin | Wan, Gwo-Hwa
Both air pollution and meteorological factors in metropolitan areas increased emergency department (ED) visits from people with chronic obstructive pulmonary disease (COPD). Few studies investigated the associations between air pollution, meteorological factors, and COPD-related health disorders in Asian countries. This study aimed to investigate the relationship between the environmental factors and COPD-associated ED visits of susceptible elderly population in the largest Taiwanese metropolitan area (Taipei area, including Taipei city and New Taipei city) between 2000 and 2013. Data of air pollutant concentrations (PM10, PM2.5, O3, SO2, NO2 and CO), meteorological factors (daily temperature, relative humidity and air pressure), and daily COPD-associated ED visits were collected from Taiwan Environmental Protection Administration air monitoring stations, Central Weather Bureau stations, and the Taiwan National Health Insurance database in Taipei area. We used a case-crossover study design and conditional logistic regression models with odds ratios (ORs), and 95% confidence intervals (CIs) for evaluating the associations between the environmental factors and COPD-associated ED visits. Analyses showed that PM2.5, O3, and SO2 had significantly greater lag effects (the lag was 4 days for PM2.5, and 5 days for O3 and SO2) on COPD-associated ED visits of the elderly population (65–79 years old). In warmer days, a significantly greater effect on elderly COPD-associated ED visits was estimated for PM2.5 with coexistence of O3. Additionally, either O3 or SO2 combined with other air pollutants increased the risk of elderly COPD-associated ED visits in the days of high relative humidity and air pressure difference, respectively. This study showed that joint effect of urban air pollution and meteorological factors contributed to the COPD-associated ED visits of the susceptible elderly population in the largest metropolitan area in Taiwan. Government authorities should review existing air pollution policies, and strengthen health education propaganda to ensure the health of the susceptible elderly population.
Afficher plus [+] Moins [-]