Affiner votre recherche
Résultats 1-10 de 550
Spatiotemporal distribution and environmental control factors of halocarbons in the Yangtze River Estuary and its adjacent marine area during autumn and spring
2022
Zou, Yawen | He, Zhen | Liu, Chunying | Yang, Gui-Peng
The oceanic production and release of volatile halocarbons (VHCs) to the atmosphere play a vital role in regulating the global climate. In this study, seasonal and spatial variations in VHCs, including trichlorofluoromethane (CFC-11), methyl iodide (CH₃I), dibromomethane (CH₂Br₂), and bromoform (CHBr₃), and environmental parameters affecting their concentrations were characterized in the atmosphere and seawater of the Yangtze River Estuary and its adjacent marine area during two cruises from October 17 to October 26, 2019 and from May 12 to May 25, 2020. Significant seasonal variations were observed in the atmosphere and seawater because of seasonal differences in the prevalent monsoon, water mass (Yangtze River Diluted Water), and biogenic production. VHCs concentrations were positively correlated with Chl-a concentrations in the surface water during autumn. The average sea-to-air fluxes of CH₃I, CH₂Br₂, and CHBr₃ in autumn were 19.7, 4.0, and 7.6 nmol m⁻² d⁻¹, respectively, while those in spring were 6.3, 6.4, and −3.6 nmol m⁻² d⁻¹. In the ship-based incubation experiments, ocean acidification and dust deposition had no significant effects on VHCs concentrations. The concentrations of CH₂Br₂ and CHBr₃ were significantly positively correlated with phytoplankton biomass under lower pH condition (M3: pH 7.9). This result indicated that CH₂Br₂ and CHBr₃ concentrations were mainly related to the biological release.
Afficher plus [+] Moins [-]The relationship between greenspace and personal exposure to PM2.5 during walking trips in Delhi, India
2022
Mueller, William | Wilkinson, Paul | Milner, James | Loh, Miranda | Vardoulakis, Sotiris | Petard, Zoë | Cherrie, Mark | Puttaswamy, Naveen | Balakrishnan, Kalpana | Arvind, D.K.
The presence of urban greenspace may lead to reduced personal exposure to air pollution via several mechanisms, for example, increased dispersion of airborne particulates; however, there is a lack of real-time evidence across different urban contexts. Study participants were 79 adolescents with asthma who lived in Delhi, India and were recruited to the Delhi Air Pollution and Health Effects (DAPHNE) study. Participants were monitored continuously for exposure to PM₂.₅ (particulate matter with an aerodynamic diameter of less than 2.5 μm) for 48 h. We isolated normal day-to-day walking journeys (n = 199) from the personal monitoring dataset and assessed the relationship between greenspace and personal PM₂.₅ using different spatial scales of the mean Normalised Difference Vegetation Index (NDVI), mean tree cover (TC), and proportion of surrounding green land use (GLU) and parks or forests (PF). The journeys had a mean duration of 12.7 (range 5, 53) min and mean PM₂.₅ personal exposure of 133.9 (standard deviation = 114.8) μg/m³. The within-trip analysis showed weak inverse associations between greenspace markers and PM₂.₅ concentrations only in the spring/summer/monsoon season, with statistically significant associations for TC at the 25 and 50 m buffers in adjusted models. Between-trip analysis also indicated inverse associations for NDVI and TC, but suggested positive associations for GLU and PF in the spring/summer/monsoon season; no overall patterns of association were evident in the autumn/winter season. Associations between greenspace and personal PM₂.₅ during walking trips in Delhi varied across metrics, spatial scales, and season, but were most consistent for TC. These mixed findings may partly relate to journeys being dominated by walking along roads and small effects on PM₂.₅ of small pockets of greenspace. Larger areas of greenspace may, however, give rise to observable spatial effects on PM₂.₅, which vary by season.
Afficher plus [+] Moins [-]An empirical model to estimate ammonia emission from cropland fertilization in China
2021
Wang, Chen | Cheng, Kun | Ren, Chenchen | Liu, Hongbin | Sun, Jianfei | Reis, Stefan | Yin, Shasha | Xu, Jianming | Gu, Baojing
Ammonia (NH₃) volatilization is one of the main pathways of nitrogen loss from cropland, resulting not only in economic losses, but also environmental and human health impacts. The magnitude and timing of NH₃ emissions from cropland fertilizer application highly depends on agricultural practices, climate and soil factors, which previous studies have typically only considered at coarse spatio-temporal resolution. In this paper, we describe a first highly detailed empirical regression model for ammonia (ERMA) emissions based on 1443 field observations across China. This model is applied at county level by integrating data with unprecedented high spatio-temporal resolution of agricultural practices and climate and soil factors. Results showed that total NH₃ emissions from cropland fertilizer application amount to 4.3 Tg NH₃ yr⁻¹ in 2017 with an overall NH₃ emission factor of 12%. Agricultural production for vegetables, maize and rice are the three largest emitters. Compared to previous studies, more emission hotspots were found in South China and temporally, emission peaks are estimated to occur three months earlier in the year, while the total amount of emissions is estimated to be close to that calculated by previous studies. A second emission peak is identified in October, most likely related to the fertilization of the second crop in autumn. Incorporating these new findings on NH₃ emission patterns will enable a better parametrization of models and hence improve the modelling of air quality and subsequent impacts on ecosystems through reactive N deposition.
Afficher plus [+] Moins [-]Evaluation of origin-depended nitrogen input through atmospheric deposition and its effect on primary production in coastal areas of western Kyusyu, Japan
2021
Umezawa, Yu | Toyoshima, Kanae | Saitoh, Yu | Takeda, Shigenobu | Tamura, Kei | Tamaya, Chiaki | Yamaguchi, Akira | Yoshimizu, Chikage | Tayasu, Ichiro | Kawamoto, Kazuaki
Long term monitoring of atmospheric wet and dry depositions and associated nutrients fluxes was conducted on the coast of Japan facing the East China Sea continuously for 1 year and 2 months, with the origin of air mass investigated based on isotope analyses (Sr, Nd, and NO₃). During the same period, intensive observations of ocean conditions and the chemical composition of sinking particles collected using sediment traps were conducted to investigate the effects of atmospheric deposition-derived nutrients on phytoplankton blooms. Dry-deposition-derived nutrient inputs to the surface ocean were larger during autumn to spring than in summer due to the effect of continental air mass occasionally carrying Asian dust (yellow sand). However, these nutrients fluxes were limited (1.1–1.5 mg-N m⁻² day⁻¹ on average) and didn't appear to cause phytoplankton blooms through the year. Although average dissolved inorganic nitrogen (DIN) concentrations in rainwater were lower in oceanic air masses compared to continental air masses, wet-deposition-derived nutrient inputs to the surface ocean on rainy days during the summer (26.0 mg-N m⁻² day⁻¹ on average) were large due to higher precipitation from oceanic air masses. Wet-deposition-derived nutrients significantly increased nutrient concentrations in the surface ocean and seemed to cause phytoplankton blooms in the warm rainy season when nutrients in the surface were depleted due to increased stratification. The increase in phytoplankton biomass was reflected in increased particle sinking into the bottom layer, as well as changing chemical characteristics. The supply of flesh phytoplankton-derived labile organic matter into the bottom layer could be expected to promote rapid bacterial decomposition and contribute to the formation of hypoxic water masses in early summer when the ocean was strongly stratified. Atmospheric deposition-derived nutrients in East Asia will have important impacts on not only the oligotrophic outer ocean but also surrounding coastal areas in the warm rainy season.
Afficher plus [+] Moins [-]Temporal and spatial distributions and sources of heavy metals in atmospheric deposition in western Taihu Lake, China
2021
Li, Yan | Zhou, Shenglu | Jia, Zhenyi | Liu, Ke | Wang, Genmei
Heavy metals in atmospheric dust can directly pollute the soil, water and sediment, causing serious harm to human health. In this study, the temporal and spatial distribution characteristics of heavy metals in atmospheric deposition in western Taihu Lake were studied. We established 10 sampling sites to collect atmospheric deposition for two years in different seasons. The atmospheric deposition flux follows the order urban area (95.6 g m⁻²·a⁻¹) > suburban area (80.2 g m⁻²·a⁻¹) > forestland (56.8 g m⁻²·a⁻¹). The concentrations of heavy metals in atmospheric deposition show trends of high values in the winter and low values in the summer and are significantly negatively correlated with distance from the city. The pollution level of Igₑₒ-Cd is 6, which is very high, and that of E-Cd is 219, which means high risk. Heavy metals in atmospheric deposition are mainly taken up via hand-mouth intake, and the harm to children is significantly higher than the harm to adults. The highest health risk assessment values for the four analyzed heavy metals in atmospheric deposition are located near the city and in suburbs (within 5 km of the city center), that is, in areas where human activities are concentrated. The health risk assessment values in areas outside the suburbs are low; these areas are less affected by human activities. The health risk assessment values of heavy metals in the winter and spring are higher than those in the summer and autumn. The Pb isotope ratios show that the main sources of heavy metals in atmospheric deposition and local soil are human activities, such as industry and coal combustion, with less input from natural sources. Heavy metals in atmospheric deposition in the western part of Taihu Lake not only directly threaten local human health but also enter Taihu Lake, posing a serious threat to the Taihu Lake ecosystem.
Afficher plus [+] Moins [-]Seasonal variations in the mass characteristics and optical properties of carbonaceous constituents of PM2.5 in six cities of North China
2021
Luo, Lining | Tian, Hezhong | Liu, Huanjia | Bai, Xiaoxuan | Liu, Wei | Liu, Shuhan | Wu, Bobo | Lin, Shumin | Zhao, Shuang | Hao, Yan | Sun, Yujiao | Hao, Jiming | Zhang, Kai
Carbonaceous constituents have various adverse impacts on human health, visibility, and climate change. Although comprehensive studies on the characteristics of carbonaceous constituents have been conducted recently, systematic studies covering both the mass characteristics and light-absorption properties of carbonaceous constituents on a regional scale in China are quite limited. In this study, current seasonal measurements of organic carbon (OC) and elemental carbon (EC) in PM₂.₅ were investigated during autumn and winter (1–30 October 2017 and December 18, 2017 to January 17, 2018) in six selected cities located at the eastern foot of the Taihang Mountains: Beijing, Baoding, Shijiazhuang, Handan, Xinxiang, and Zhengzhou. Seasonal variations were similar when Beijing was excluded. The lowest concentrations of OC (18.33 ± 9.39 μg/m³) and EC (7.66 ± 5.64 μg/m³) were observed in Xinxiang (autumn) and Beijing (winter), respectively, while the highest concentrations of OC (38.43 ± 62.10 μg/m³) and EC (12.24 ± 24.67 μg/m³) occurred in Baoding during winter mainly due to elevated fuel combustion for space heating. The results of the potential source contribution function (PSCF) analysis suggested that border zones between several provinces in North China should be highlighted in order to strengthen pollution control. Moreover, by separating the optical properties of brown carbon from those of black carbon, we were able to estimate the contributions of brown carbon to the PM₂.₅ total light-absorption coefficient. The results show that the brown carbon absorption coefficient (at 405 nm) in winter at six sites accounted for 21.2%, 33.3%, 34.7%, 39.1%, 48.6%, and 23.3% of the PM₂.₅ light absorption, which are values that are comparable to the contribution of black carbon in Xinxiang. These results provide a more comprehensive understanding of carbonaceous constituents on a regional scale.
Afficher plus [+] Moins [-]Spatiotemporal variation and distribution characteristics of crop residue burning in China from 2001 to 2018
2021
Yin, Shuai | Guo, Meng | Wang, Xiufeng | Yamamoto, Haruhiko | Ou, Wei
In this study, we integrated a remote-sensing fire product (MOD14A1) and land-use product (MCD12Q1) to extract the number of crop-residue burning (CRB) spots and the fire radiative power (FRP) in China from 2001 to 2018. Moreover, we conducted three trend analyses and two geographic distribution analyses to quantify the interannual variations and summarize the spatial characteristics of CRB on grid (0.25° × 0.25°) and regional scales. The results indicated that CRB presents distinctive seasonal patterns with each sub-region. All trend analyses suggested that the annual number of CRB spots in China increased significantly from 2001 to 2018; the linear trend reached 2615 spots/year, the Theil-Sen slope was slightly lower at 2557 spots/year, and the Mann-Kendal τ was 0.75. By dividing the study period into two sub-periods, we found that the five sub-regions presented different trends in the first and second sub-periods; e.g., the Theil-Sen slope of eastern China in the first sub-period (2001–2009) was 1021 spots/year but was −1599 spots/year in the second period (2010–2018). This suggests that summer CRB has been effectively mitigated in eastern China since 2010. Further, the average FRP of CRB spots presented a decreasing trend from 27.5 MW/spot in 2001 to only 15.8 MW/spot in 2018; this may be attributable to more scattered CRB rather than aggregated CRB. Collectively, the fire spots, FRP, and average FRP indicated that spring, summer, and autumn CRB had dropped dramatically over previous levels by 2018 due to strict mitigation measures by local governments.
Afficher plus [+] Moins [-]Microplastic contamination in surface waters of the Küçükçekmece Lagoon, Marmara Sea (Turkey): Sources and areal distribution
2021
Faruk Çullu, Ahmet | Sönmez, Vildan Zülal | Sivri, Nüket
The distribution of freshwater and marine microplastics (MPs) varies due to the difference in fresh and seawater densities and MP sources. This study aims to investigate the abundance of MPs and their possible sources in surface waters of different ecosystems, such as sea, lagoon, and lake. We classified MPs in terms of their color and type and established the relationship between the MPs in surface waters with different characteristics. The mean MP abundance (33 particles L⁻¹) detected herein was higher than that in the previously conducted studies. Fragment particles (37.95%) were determined to be the dominant MP type, and the predominant MP color was blue (75.28%). As for the seasonal MP distribution, its highest content (48.03 particles L⁻¹) was observed in autumn, unlike that reported by other studies. The findings of this study reveal the effects of wastewater treatment plant (WWTP) discharge and current flow on the MP distribution in the study area. This study aims to provide representative data on the MP abundance and distribution, as well as MP-affecting parameters for similar aquatic areas in other parts of the world.
Afficher plus [+] Moins [-]Organic pollutants in marine samples from Tunisian coast: Occurrence and associated human health risks
2021
Jebara, Amel | Lo Turco, Vincenzo | Potortì, Angela Giorgia | Bartolomeo, Giovanni | Ben Mansour, Hedi | Di Bella, Giuseppa
140 contaminants belonging to various classes (organochlorine and organophosphorus pesticides, pyrethroid insecticides, carbamates, fungicides, acaricides, herbicides, synergists, insect growth regulators, polychlorobiphenyls, polycyclic aromatic hydrocarbons) were simultaneously analysed by GC-MS/MS in marine sediments, aquatic plant leaves and fish tissues samples. A total of 260 samples from five stations along the coast of Tunisia were evaluated. The results highlight that only 28 residues (12 polychlorobiphenyls, 8 organochlorine pesticides, 7 polycyclic aromatic hydrocarbons and triphenyl phosphate) were detected at levels higher than relative LOQ values. The amounts in sediment samples were compared with Sediment Quality Guidelines (SQGs) showing that the values are acceptable and no toxic effect is expected on aquatic organisms. A little variation of contaminant residues in sediment samples among coastal stations was recorded. Namely, with respect to almost all polychlorobiphenyls and organochlorine pesticides, higher values were recorder in summer. With respect to almost all polycyclic aromatic hydrocarbons, higher values were recorder in autumn. Aquatic plant leaves showed a residue accumulation higher than that of other compartments of marine system. The data about fish samples (Sparus aurata and Sarpa salpa, the two most frequently caught fish species at five sites on the central coast of Tunisia) do not pose direct hazard to human health because values were lower than protection limits.
Afficher plus [+] Moins [-]Spatiotemporal differences in phosphorus release potential of bloom-forming cyanobacteria in Lake Taihu
2021
Wang, Mengmeng | Zhang, Huifen | Du, Caili | Zhang, Wei | Shen, Jianing | Yang, Shunqing | Yang, Liuyan
The abnormal elevation of cyanobacterial density and total phosphorus concentration after the reduction of exogenous pollutants in Lake Taihu is still an open question. An in-situ light-dark bottle method was used to investigate the spatiotemporal differences of phosphorus release potential of bloom-forming cyanobacteria (BFC) in Lake Taihu. Generalized additive model analysis (GAM) of field data revealed that the phosphorus release potential of BFC increased with the upregulation of Chlorophyll a (Chl-a) content per cell, which was further validated by the laboratory experiment results. We deduced that the accumulation of Chl-a content per cell might be an essential index of high phosphorus release potential of BFC. The phosphorus release potential of BFC was much higher in summer and autumn than that in spring and winter, while the phosphorus absorption potential increased with the rising of temperature. The distinct physiological status of BFC at different seasons brought about their variation in phosphorus release potential. Additionally, high phosphorus release potential of BFC region mainly concentrated in the eastern and the central, northwest, western, and the south of Lake Taihu in spring, summer, autumn, and winter, respectively. Further studies showed that the spatial differences in phosphorus release potential of BFC were most probably due to the horizontal drift of BFC driven by the prevailing wind. Collectively, the synergism of BFC’s physiological status and horizontal drift determined the spatiotemporal differences of phosphorus release potential of BFC in Lake Taihu. Moreover, apparent spatiotemporal differences in phosphorus release potential of BFC were essential factors that induced the distinct distribution of total phosphorus in Lake Taihu. This study provides insight for exploring the reason for the constant increase of total dissolved phosphorus concentration and cyanobacterial density in Lake Taihu for the past 5 years.
Afficher plus [+] Moins [-]