Affiner votre recherche
Résultats 1-10 de 12
Comparison of PM2.5 chemical composition and sources at a rural background site in Central Europe between 1993/1994/1995 and 2009/2010: Effect of legislative regulations and economic transformation on the air quality
2018
Pokorná, Petra | Schwarz, Jaroslav | Krejci, Radovan | Swietlicki, Erik | Havránek, Vladimír | Ždímal, Vladimír
From December 1993 to January 1995 and from October 2009 to October 2010, a total of 320 and 365 daily samples of the PM2.5 were collected at a rural background site (National Atmospheric Observatory Košetice) in Central Europe. The PM2.5 samples were analyzed for 29 and 26 elements respectively by Particle-Induced X-ray Emission (PIXE) and water-soluble inorganic ions by Ion Chromatography (IC) in 2009/2010. The Positive Matrix Factorization (PMF) was applied to the chemical composition of PM2.5 to determine its sources. The decreasing trends of almost all elements concentrations, especially the metals regulated by the EU Directive (2004/107/EC) are evident. The annual median ratios indicate a decrease in concentrations of the PM2.5 elements. The slight increase of K concentrations and Spearman's rank correlation coefficient rs 0.09 K/Se points to a rise in residential wood combustion. The S concentrations are nearly comparable (higher mean in 2009/2010, while the annual median ratio is under 1). The five major source types in the mid-1990s were ascribed to brown coal combustion, oil combustion, sea salt and dust – long-range transport, re-suspended dust and black coal combustion. The industrial combustion of brown and/or black coal (rs 0.75 Se/As, rs 0.57 Ga/Ge and rs 0.20 As/Zn) and oil (rs 0.72 V/Ni) of the regional origin dominated. In the 1990s, the potential source regions were the border area of Czech Republic, German and Poland (brown coal), the Moravia-Silesia region at the Czech-Polish border (black coal), and Slovakia, Austria, Hungary, and the Balkans (oil). In 2009/2010, the apportioned sources were sulfate, residential heating, nitrate, industry, re-suspended dust, and sea salt and dust – long-range transport. The secondary sulfate from coal combustion and residential biomass burning (rs 0.96, K/K+) of local origin dominated.The declining trend of the elemental concentrations and change in the source pattern of the regional background PM2.5 in Central Europe between the mid-1990s and 2009/10 reflects the economic transformation and impact of stricter legislation in Central Europe.
Afficher plus [+] Moins [-]Benzo(a)pyrene in Europe: Ambient air concentrations, population exposure and health effects
2016
Guerreiro, C.B.B. | Horálek, J. | de Leeuw, F. | Couvidat, F.
This study estimated current benzo(a)pyrene (BaP) concentration levels, population exposure and potential health impacts of exposure to ambient air BaP in Europe. These estimates were done by combining the best available information from observations and chemical transport models through the use of spatial interpolation methods. Results show large exceedances of the European target value for BaP in 2012 over large areas, particularly in central-eastern Europe. Results also show large uncertainties in the concentration estimates in regions with a few or no measurement stations. The estimation of the population exposure to BaP concentrations and its health impacts was limited to 60% of the European population, covering only the modelled areas which met the data quality requirement for modelling of BaP concentrations set by the European directive 2004/107/EC. The population exposure estimate shows that 20% of the European population is exposed to BaP background ambient concentrations above the EU target value and only 7% live in areas with concentrations under the estimated acceptable risk level of 0.12 ng m−3. This exposure leads to an estimated 370 lung cancer incidences per year, for the 60% of the European population included in the estimation. Emissions of BaP have increased in the last decade with the increase in emissions from household combustion of biomass. At the same time, climate mitigation policies are promoting the use of biomass burning for domestic heating. The current study shows that there is a need for more BaP measurements in areas of low measurement density, particularly where high concentrations are expected, e.g. in Romania, Bulgaria, and other Balkan states. Furthermore, this study shows that the health risk posed by PAH exposure calls for better coordination between air quality and climate mitigation policies in Europe.
Afficher plus [+] Moins [-]Concomitant occurrence of anthropogenic air pollutants, mineral dust and fungal spores during long-distance transport of ragweed pollen
2019
Grewling, Łukasz | Bogawski, Paweł | Kryza, Maciej | Magyar, Donat | Šikoparija, Branko | Skjøth, Carsten Ambelas | Udvardy, Orsolya | Werner, Małgorzata | Smith, Matt
Large-scale synoptic conditions are able to transport considerable amounts of airborne particles over entire continents by creating substantial air mass movement. This phenomenon is observed in Europe in relation to highly allergenic ragweed (Ambrosia L.) pollen grains that are transported from populations in Central Europe (mainly the Pannonian Plain and Balkans) to the North. The path taken by atmospheric ragweed pollen often passes through the highly industrialised mining region of Silesia in Southern Poland, considered to be one of the most polluted areas in the EU. It is hypothesized that chemical air pollutants released over Silesia could become mixed with biological material and be transported to less polluted regions further North. We analysed levels of air pollution during episodes of long-distance transport (LDT) of ragweed pollen to Poland. Results show that, concomitantly with pollen, the concentration of air pollutants with potential health-risk, i.e. SO₂, and PM₁₀, have also significantly increased (by 104% and 37%, respectively) in the receptor area (Western Poland). Chemical transport modelling (EMEP) and air mass back-trajectory analysis (HYSPLIT) showed that potential sources of PM₁₀ include Silesia, as well as mineral dust from the Ukrainian steppe and the Sahara Desert. In addition, atmospheric concentrations of other allergenic biological particles, i.e. Alternaria Nees ex Fr. spores, also increased markedly (by 115%) during LDT episodes. We suggest that the LDT episodes of ragweed pollen over Europe are not a “one-component” phenomenon, but are often related to elevated levels of chemical air pollutants and other biotic and abiotic components (fungal spores and desert dust).
Afficher plus [+] Moins [-]Ionic profile of honey as a potential indicator of botanical origin and global environmental pollution
2013
Fermo, Paola | Beretta, Giangiacomo | Maffei Facino, Roberto | Gelmini, Fabrizio | Piazzalunga, Andrea
Aim of this study was to determine by Ion Chromatography ions (Na+, Ca++, Mg++, NH4+, Cl−, Br−, SO42−, NO3−, PO43−) in honeys (honeydew and floral nectar honeys) from different Italian Regions and from countries of the Western Balkan area. The compositional data were processed by multivariate analysis (PCA and HCA). Arboreal honeydew honeys from the Western Balkans had higher concentrations (from two to three times) of some environmental pollutants (Br−, SO42− and PO43− contents), due to industrial and agricultural activities, than those from Italian regions. The cationic profiles were very similar in both groups. Multivariate analysis indicated a clear difference between nectar honeys and arboreal/honeydew honeys (recognition of the botanical origin). These findings point to the potential of ionic constituents of honey as indicators of environmental pollution, botanical origin and authenticity.
Afficher plus [+] Moins [-]Assessing the Impacts of Climate and Land Use Changes on the Water Quality of a Transboundary Balkan River
2016
Dimitriou, Elias | Mentzafou, Aggeliki
The Mediterranean area is highly vulnerable to climate changes that combined with potential land use changes could influence its aquatic systems significantly. The Evros River is one of the most important surface water bodies in the Balkans with an ecologically significant delta that is protected by international legislation. The aim of this study is to analyze the impacts of climate and land use changes on Evros River water quality, for different climatic and socioeconomic scenarios. For this purpose, a hydrodynamic and advection-dispersion model was set up and calibrated, three IPCC climatic scenarios were applied, and the pollution loads of the catchment area were estimated. These scenarios involved river discharge decrease due to regional climate changes and socioeconomic and technological development that would lead to population growth and to the decrease of agricultural activities. The results indicated that in the case of discharge reduction only, the total nitrate and phosphate concentrations will be increased, while in case of combined land use and discharge changes, the concentration of nutrients will be decreased. Thus, a transboundary long-term management plan of the entire River is needed that would eliminate the pollution pressures and restore its good ecological status.
Afficher plus [+] Moins [-]Method development for determination of migrated phthalate acid esters from polyethylene terephthalate (PET) packaging into traditional Iranian drinking beverage (Doogh) samples: a novel approach of MSPE-GC/MS technique
2018
Kiani, Amin | Ahmadloo, Mahsa | Shariatifar, Nabi | Moazzen, Mojtaba | Baghani, AbbasNorouzian | Khaniki, GholamRezaJahed | Taghinezhad, Ali | Kouhpayeh, Amin | Mousavi Khaneghah, Amin | Ghajarbeygi, Peyman
In the current study, a novel magnetic solid phase extraction (MSPE) technique combined with a gas chromatography/mass spectroscopy (GC/MS) was developed to determine the phthalate ester content of bottled Doogh samples. Doogh is a yogurt-based drinking beverage, which is frequently consumed in Middle East and Balkans. It is produced by stirring yogurt in Chern separation machine and consists of substances such as water, yogurt, and salt in addition to aqueous extracts of native herbs. The magnetic multi-walled carbon nanotubes (MWCNT-Fe₃O₄) were used as adsorbents of phthalate acid esters (PAEs) due to a superior adsorption capability of hydrophobic compounds. In this context, the quantity of the extractable migrated phthalate esters (dibutyl phthalate (DBP), dimethyl phthalate (DMP), butyl benzyl phthalate (BBP), diethyl phthalate (DEP), di-N-octyl phthalate (DNOP), and bis (2-ethylhexyl) phthalate (DEHP)) from polyethylene terephthalate (PET) bottles into Doogh samples was measured. The correlation between the concentration of migrated PAEs and some factors such as the type of Doogh (gaseous and without gas), difference in brand (five brands), volume (1500 and 300 mL), and the storage time also was investigated. The migration level into Doogh samples was increased by incorporating of gas as well as increasing the volume of PET bottles. Also, with elaborating of storage time, the migration of some phthalates such as DEHP (the mean from 2419.85 ng L⁻¹ in the first week to 2716.15 ng L⁻¹ in the second month), DEP, and total phthalate was increased. However, no significant difference in concentrations of migrated phthalate esters among different examined brands was noted. Finally, the concentration of migrated PAEs from bottle into all the examined Doogh samples was below the defined standards by EPA; 6 μg/L for DEHP in drinking water. Graphical abstract ᅟ
Afficher plus [+] Moins [-]Chemical characterization and receptor modeling of PM10 in the surroundings of the opencast lignite mines of Western Macedonia, Greece
2018
Samara, Constantini | Argyropoulos, George | Grigoratos, Theodoros | Kouras, Αthanasios | Manoli, Εvangelia | Andreadou, Symela | Pavloudakis, Fragkiskos | Sahanidis, Chariton
The Western Macedonian Lignite Center (WMLC) in northwestern Greece is the major lignite center in the Balkans feeding four major power plants of total power exceeding 4 GW. Concentrations of PM₁₀ (i.e., particulate matters with diameters ≤10 μm) are the main concern in the region, and the high levels observed are often attributed to the activities related to power generation. In this study, the contribution of fugitive dust emissions from the opencast lignite mines to the ambient levels of PM₁₀ in the surroundings was estimated by performing chemical mass balance (CMB) receptor modeling. For this purpose, PM₁₀ samples were concurrently collected at four receptor sites located in the periphery of the mine area during the cold and the warm periods of the year (November–December 2011 and August–September 2012), and analyzed for a total of 26 macro- and trace elements and ionic species (sulfate, nitrate, chloride). The robotic chemical mass balance (RCMB) model was employed for source identification/apportionment of PM₁₀ at each receptor site using as inputs the ambient concentrations and the chemical profiles of various sources including the major mine operations, the fly ash escaping the electrostatic filters of the power plants, and other primary and secondary sources. Mean measured PM₁₀ concentrations at the different sites ranged from 38 to 72 μg m⁻³. The estimated total contribution of mines ranged between 9 and 22% in the cold period increasing to 36–42% in the dry warm period. Other significant sources were vehicular traffic, biomass burning, and secondary sulfate and nitrate aerosol. These results imply that more efficient measures to prevent and suppress fugitive dust emissions from the mines are needed.
Afficher plus [+] Moins [-]Mass distributions and morphological and chemical characterization of urban aerosols in the continental Balkan area (Belgrade)
2016
Đorđević, D. | Buha, J. | Stortini, A. M. | Mihajlidi-Zelić, A. | Relić, D. | Barbante, C. | Gambaro, A.
This work presents characteristics of atmospheric aerosols of urban central Balkans area, using a size-segregated aerosol sampling method, calculation of mass distributions, SEM/EDX characterization, and ICP/MS analysis. Three types of mass distributions were observed: distribution with a pronounced domination of coarse mode, bimodal distribution, and distribution with minimum at 1 μm describing the urban aerosol. SEM/EDX analyses have shown morphological difference and variation in the content of elements in samples. EDX spectra demonstrate that particles generally contain the following elements: Al, Ca, K, Fe, Mg, Ni, K, Si, S. Additionally, the presence of As, Br, Sn, and Zn found in air masses from southeast segment points out the anthropogenic activities most probably from mining activities in southeastern part of Serbia. The ratio Al/Si equivalent to the ratio of desert dust was associated with air masses coming from southeastern and southwestern segments, pointing to influences from North Africa and Middle East desert areas whereas the Al/Si ratio in other samples is significantly lower. In several samples, we found high values of aluminum in the nucleation mode. Samples with low share of crustal elements in the coarse mode are collected when Mediterranean air masses prevailed, while high share in the coarse mode was associated with continental air masses that could be one of the approaches for identification of the aerosol origin.
Afficher plus [+] Moins [-]Gas-particle partitioning of persistent organic pollutants in the Western Balkan countries affected by war conflicts
2009
Radonic, Jelena | Sekulic, Maja Turk | Vojinović-Miloradov, Mirjana | Čupr, Pavel | Klánová, Jana
Background, aim, and scope Bombing and destruction of the industrial and military targets accompanied by complete or incomplete combustion during the war conflict and NATO operation in former Yugoslavia caused the emission of persistent organic pollutants into the atmosphere, water, and soil. A total of 129 ambient air samples from 24 background, urban, and industrial sites, including hot spots, were collected to assess a gas-particle partitioning behavior of various persistent organic pollutants. Materials and methods High volume sampling technique was applied with quartz filters that collect the atmospheric particles and polyurethane foam filters (PUF) that retain the gaseous compounds. Three to ten samples were taken at each site. GFs and PUFs were analyzed separately for their content of polychlorinated biphenyls, organochlorine pesticides, and polyaromatic hydrocarbons. Results Gas phase and particle phase concentrations of selected persistent organic pollutants (POPs) in all samples were converted into the particle-bound fractions [Greek Phi symbol]. These fractions were found to be highly variable, but generally highest in Bosnia and Herzegovina due to the elevated levels of total suspended material in ambient air. Discussion Experimental values of particle-associated fraction were compared to the Junge-Pankow model. Interestingly, a model for urban/industrial environments provided a better prediction of partitioning behavior than a model for background and rural background sites. That is probably because the total amount of atmospheric particles is higher in the Balkan region than found in the previously published studies. Conclusions Even though it has been stated in previous studies that less than 5% of polychlorinated biphenyls (PCBs) are bound to the particles, up to 67% of PCBs were particle associated at several sampling sites in this study. PCB-contaminated soils are probably still one of the strong sources of particles to the atmosphere. Recommendations and perspectives Information on the particle-bound fractions of POPs is important not only for prediction of their fate but also for an estimation of risks they can pose to the environment as well as to humans. When assessing such hazards, it has to be considered that modeled values of the particle-bound fractions can be seriously underestimated at sites with elevated levels of suspended atmospheric matter or at sites with heavily contaminated soils.
Afficher plus [+] Moins [-]Trace elements in size-segregated urban aerosol in relation to the anthropogenic emission sources and the resuspension
2014
Đorđević, Dragana | Stortini, Angela Maria | Relić, Dubravka | Mihajlidi-Zelić, Aleksandra | Huremović, Jasna | Barbante, Carlo | Gambaro, Andrea
Size segregated particulate samples of atmospheric aerosols in urban site of continental part of Balkans were collected during 6 months in 2008. Six stages impactor in the size ranges: Dp ≤ 0.49 μm, 0.49 < Dp ≤ 0.95 μm, 0.95 < Dp ≤ 1.5 μm, 1.5 < Dp ≤ 3.0 μm, 3.0 < Dp ≤ 7.2 μm, and 7.2 < Dp ≤ 10.0 μm was applied for sampling. ICP-MS was used to quantify elements: Al, As, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ga, K, Li, Na, Ni, Mg, Mn, Pb, Sb, V, and Zn. Two main groups of elements were investigated: (1) K, V, Ni, Zn, Pb, As, and Cd with high domination in nuclei mode indicating the combustion processes as a dominant sources and (2) Al, Fe, Ca, Mg, Na, Cr, Ga, Co, and Li in coarse mode indicating mechanical processes as their main origin. The strictly crustal origin is for Mg, Fe, Ca, and Co while for As, Cd, K, V, Ni, Cu, Pb, and Zn dominates the anthropogenic influence. The PCA analysis has shown that main contribution is of resuspension (PC1, σ² ≈ 30 %) followed by traffic (PC2, σ² ≈ 20 %) that are together contributing around 50 % of elements in the investigated urban aerosol. The EF model shows that major origin of Cd, K, V, Ni, Cu, Pb, Zn, and As in the fine mode is from the anthropogenic sources while increase of their contents in the coarse particles indicates their deposition from the atmosphere and soil contamination. This approach is useful for the assessment of the local resuspension influence on element’s contents in the aerosol and also for the evaluation of the historical pollution of soil caused by deposition of metals from the atmosphere.
Afficher plus [+] Moins [-]