Affiner votre recherche
Résultats 1-10 de 115
Osmium isotope geochemistry of steel plant emissions using tree bark biomonitoring Texte intégral
2021
Kousehlar, Masoomeh | Widom, Elisabeth | Kuentz, David
We report for the first time the Os isotopic composition of tree bark samples from a steel town. Osmium concentrations and ¹⁸⁷Os/¹⁸⁸Os isotopic ratios of ashed bark samples range from 1.40 to 24 ppt and 0.70 to 1.54, respectively, with the lowest ¹⁸⁷Os/¹⁸⁸Os recorded in samples close to the steel plant. Compositional variations in the bark samples can be explained by mixing between at least two sources with different Os isotopic signatures: a radiogenic source consistent with crust-derived materials and a relatively less radiogenic source consistent with mantle-derived chromite. The exact origin of the radiogenic Os component cannot be constrained, as background signatures and crustal materials used in the steel industry (e.g., coal and iron ore) likely have overlapping radiogenic signatures. Cr shows a similar distribution pattern to Os, indicating that both metals have a common origin, which provides further evidence that the Os budget in the bark samples is controlled primarily by the chromite used in the steel manufacturing. This study shows that Os isotopes are an effective tool for tracing steel production-related emissions.
Afficher plus [+] Moins [-]Mercury in terrestrial forested systems with highly elevated mercury deposition in southwestern China: The risk to insects and potential release from wildfires Texte intégral
2016
Zhou, Jun | Wang, Zhangwei | Sun, Ting | Zhang, Huan | Zhang, Xiaoshan
Forests are considered a pool of mercury in the global mercury cycle. However, few studies have investigated the distribution of mercury in the forested systems in China. Tieshanping forest catchment in southwest China was impacted by mercury emissions from industrial activities and coal combustions. Our work studied mercury content in atmosphere, soil, vegetation and insect with a view to estimating the potential for mercury release during forest fires. Results of the present study showed that total gaseous mercury (TGM) was highly elevated and the annual mean concentration was 3.51 ± 1.39 ng m−2. Of the vegetation tissues, the mercury concentration follows the order of leaf/needle > root > bark > branch > bole wood for each species. Total ecosystem mercury pool was 103.5 mg m−2 and about 99.4% of the mercury resides in soil layers (0–40 cm). The remaining 0.6% (0.50 mg m−2) of mercury was stored in biomass. The large mercury stocks in the forest ecosystem pose a serious threat for large pluses to the atmospheric mercury during potential wildfires and additional ecological stress to forest insect: dung beetles, cicada and longicorn, with mercury concentration of 1983 ± 446, 49 ± 38 and 7 ± 5 ng g−1, respectively. Hence, the results obtained in the present study has implications for global estimates of mercury storage in forests, risks to forest insect and potential release to the atmosphere during wildfires.
Afficher plus [+] Moins [-]Levels of short chain chlorinated paraffins in pine needles and bark and their vegetation-air partitioning in urban areas Texte intégral
2015
Wang, Thanh | Yu, Junchao | Han, Shanlong | Wang, Yawei | Jiang, Guibin
Short chain chlorinated paraffins (SCCPs) have been of considerable concern in recent years due to their high production volumes, environmental persistency and potential for long range atmospheric transport. Vegetation can take up considerable amounts of semivolatile organic compounds from the atmosphere and can act as indicators of local contamination. Paired pine needles and bark were sampled around Beijing during winter and summertime to investigate the distribution of SCCPs in urban areas. Levels in bark samples ranged 5.79–37.5 μg/g on a lipid normalized basis (lw) with a geometric mean (GM) of 16.9 μg/g lw whereas levels were 3.03–40.8 (GM 11.8) μg/g lw for needles. Average congener group abundance profiles showed equal contribution of all four carbon groups (C10–13) in wintertime whereas higher abundances of C10 and C11 groups were found during summer. Uptake of SCCPs occurred mainly via kinetically limited gaseous deposition and particle bound deposition in the investigated area.
Afficher plus [+] Moins [-]Comparative use of lichens, mosses and tree bark to evaluate nitrogen deposition in Germany Texte intégral
2014
Boltersdorf, Stefanie H. | Pesch, Roland | Werner, Willy
To compare three biomonitoring techniques for assessing nitrogen (N) pollution in Germany, 326 lichen, 153 moss and 187 bark samples were collected from 16 sites of the national N deposition monitoring network. The analysed ranges of N content of all investigated biomonitors (0.32%–4.69%) and the detected δ15N values (−15.2‰–1.5‰), made it possible to reveal species specific spatial patterns of N concentrations in biota to indicate atmospheric N deposition in Germany. The comparison with measured and modelled N deposition data shows that particularly lichens are able to reflect the local N deposition originating from agriculture.
Afficher plus [+] Moins [-]Long-term behaviour of 137Cs in spruce bark in coniferous forests in the Czech Republic Texte intégral
2014
Rulík, Petr | Pilátová, Helena | Suchara, Ivan | Sucharová, Julie
Activity concentrations of 137Cs were detected in more than 400 outer spruce bark samples collected at sites variably affected by Chernobyl fallout across the Czech Republic in 1995 and 2010. The temporal changes in the 137Cs activities were found. The mean effective half-life (TEF) for 137Cs in spruce bark was 9.6 years, and the mean environmental half-life (TE) was 14 years. The effective half-lives were significantly higher in areas with higher long-term annual precipitation sums. Coefficient a in linear regression y = ax + b of half-lives on precipitation sums was 0.015 y mm−1 for TEF and 0.036 y mm−1 for TE. The aggregated transfer factor of 137Cs from soil to bark was determined and the pre-Chernobyl bark contamination related to year 2010 was estimated.
Afficher plus [+] Moins [-]Distribution and trends of mercury in deciduous tree cores Texte intégral
2010
Siwik, Eden I.H. | Campbell, Linda M. | Mierle, Gregory
The distribution of total mercury (THg) within common deciduous trees and the applicability of tree cores as biomonitors of historical environmental THg trends were assessed for both contaminated and reference sites around Kingston, Ontario. Samples were collected from Acer spp., Quercus spp. Populus spp. and Salix spp. Bark and wood THg concentrations were found to be highly correlated whereas soil and wood THg concentrations were not. There were no temporal relationships for THg in dated tree rings corresponding with any other known environmental Hg trends. The shoreline speciess, Populus and Salix spp., had the greatest bark and wood Hg concentrations reaching 18 ng/g, significantly higher than for inland trees Quercus and Acer spp. with maximum values of 7 and 1.2 ng/g for bark and wood respectively. While tree cores cannot be reliably used as temporal THg biomonitors, there is promise for tree species such as Populus spp and Salix spp as spatial indicators of local long-term Hg contamination.
Afficher plus [+] Moins [-]Solid fuel combustion as a major contributor of polycyclic aromatic hydrocarbons in rural China: Evidence from emission inventory and congener profiles in tree bark Texte intégral
2019
Niu, Lili | Zhou, Yuting | Xu, Chao | Zhang, Chunlong | Zhou, Jinghua | Zhang, Xichang | Liu, Weiping
Polycyclic aromatic hydrocarbons (PAHs) remain a focal concern of the air pollution in China. To discriminate the sources of airborne PAHs in Chinese rural regions, a national-scale tree bark sampling campaign and emission inventory estimation were conducted. The concentrations of the sum of 16 U.S. EPA priority PAHs in rural bark ranged from 6.30 to 3803 ng/g, with the dominance of 3- and 4-ring PAHs. Bark residual PAH concentration correlated significantly with emission flux rate, bark lipid content, ambient PM₂.₅, precipitation and sampling location. Based on the information of emission data, bark PAH congener profiles, principal component analysis, diagnostic ratios and compound-specific isotope analysis, solid fuel combustion was identified as the major source and could explain 40.3%–46.4% of bark PAH residues in rural China. The δ¹³C values of most individual PAHs were more negative at sites with lower longitude and latitude, suggesting a greater contribution of biomass combustion to PAH residues. Our results suggest the importance of regulating solid fuel combustion to significantly improve the air quality in China, and bark samples can provide a wealth of information on effectively monitoring and controlling the sources of PAH emission in rural China.
Afficher plus [+] Moins [-]Wood and bark of Pinus halepensis as archives of heavy metal pollution in the Mediterranean Region Texte intégral
2018
Rodríguez Martin, José Antonio | Gutiérrez, Carmen | Torrijos, Manuel | Nanos, Nikos
Wood and bark of Pinus halepensis as archives of heavy metal pollution in the Mediterranean Region Texte intégral
2018
Rodríguez Martin, José Antonio | Gutiérrez, Carmen | Torrijos, Manuel | Nanos, Nikos
Natural levels of heavy metals (HM) have increased during the industrial era to the point of posing a serious threat to the environment. The use of tree species to record contamination is a well-known practice. The objective of the study was to compare HM levels under different pollution conditions: a) soil pollution due to mining waste; b) atmospheric pollution due to coal-fired power plant emissions. We report significant HM enrichment in Pinus halepensis tissues. Near a burning power plant, Pb content in a tree wood was 2.5-fold higher that in natural areas (no pollution; NP). In mining areas, Cd content was 25-fold higher than NP. The hypothesis that HM contents in tree rings should register pollution is debatable. HM uptake by pines from soil, detoxification mechanisms and resuspended local soil dust is involved in HM contents in wood and bark.
Afficher plus [+] Moins [-]Wood and bark of Pinus halepensis as archives of heavy metal pollution in the Mediterranean Region Texte intégral
2018
Natural levels of heavy metals (HM) have increased during the industrial era to the point of posing a serious threat to the environment. The use of tree species to record contamination is a well-known practice. The objective of the study was to compare HM levels under different pollution conditions: a) soil pollution due to mining waste; b) atmospheric pollution due to coal-fired power plant emissions. We report significant HM enrichment in Pinus halepensis tissues. Near a burning power plant, Pb content in a tree wood was 2.5-fold higher that in natural areas (no pollution; NP). In mining areas, Cd content was 25-fold higher than NP. The hypothesis that HM contents in tree rings should register pollution is debatable. HM uptake by pines from soil, detoxification mechanisms and resuspended local soil dust is involved in HM contents in wood and bark.
Afficher plus [+] Moins [-]Citizen science identifies the effects of nitrogen deposition, climate and tree species on epiphytic lichens across the UK Texte intégral
2018
Welden, N.A. | Wolseley, P.A. | Ashmore, M.R.
A national citizen survey quantified the abundance of epiphytic lichens that are known to be either sensitive or tolerant to nitrogen (N) deposition. Records were collected across the UK from over 10,000 individual trees of 22 deciduous species. Mean abundance of tolerant and sensitive lichens was related to mean N deposition rates and climatic variables at a 5 km scale, and the response of lichens was compared on the three most common trees (Quercus, Fraxinus and Acer) and by assigning all 22 tree species to three bark pH groups. The abundance of N-sensitive lichens on trunks decreased with increasing total N deposition, while that of N-tolerant lichens increased. The abundance of N-sensitive lichens on trunks was reduced close to a busy road, while the abundance of N-tolerant lichens increased. The abundance of N-tolerant lichen species on trunks was lower on Quercus and other low bark pH species, but the abundance of N-sensitive lichens was similar on different tree species. Lichen abundance relationships with total N deposition did not differ between tree species or bark pH groups. The response of N-sensitive lichens to reduced nitrogen was greater than to oxidised N, and the response of N-tolerant lichens was greater to oxidised N than to reduced N. There were differences in the response of N-sensitive and N-tolerant lichens to rainfall, humidity and temperature. Relationships with N deposition and climatic variables were similar for lichen presence on twigs as for lichen abundance on trunks, but N-sensitive lichens increased, rather than decreased, on twigs of Quercus/low bark pH species. The results demonstrate the unique power of citizen science to detect and quantify the air pollution impacts over a wide geographical range, and specifically to contribute to understanding of lichen responses to different chemical forms of N deposition, local pollution sources and bark chemistry.
Afficher plus [+] Moins [-]The effect of environmental conditions on the stability of heavy metal–filter material complex as assessed by the leaching of adsorbed metal ions Texte intégral
2011
Khokhotva, Oleksandr | Waara, Sylvia
In this study the influence of environmental conditions, most likely prevailing in filter beds used for intermittently discharged pollutant streams such as landfill leachate and storm water, on the stability of the heavy metal–filter complex was investigated for 2 filter materials; non-treated and urea treated pine bark, using leaching experiments. The metal–filter complex stability was higher for urea treated than for non-treated pine bark and dependent on the metal adsorbed. The type of environmental condition applied was of less importance for the extent of leaching.
Afficher plus [+] Moins [-]